Mots-clés : structure
@article{SVFU_2016_23_1_a5,
author = {D. V. Nikiforov},
title = {The structure of neighborhoods of 5-vertices in normal plane maps with minimum degree 5},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {56--66},
year = {2016},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a5/}
}
D. V. Nikiforov. The structure of neighborhoods of 5-vertices in normal plane maps with minimum degree 5. Matematičeskie zametki SVFU, Tome 23 (2016) no. 1, pp. 56-66. http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a5/
[1] Appel K., Haken W., “Every planar map is four colorable. I. Discharging”, Illinois J. Math, 21 (1977), 429–490 | MR | Zbl
[2] Wernicke P., “Über den kartographischen Vierfarbensatz”, Math. Ann, 58 (1904), 413–426 | DOI | MR | Zbl
[3] Franklin Ph., “The four colour problem”, Amer. J. Math, 44 (1922), 225–236 | DOI | MR | Zbl
[4] Lebesgue H., “Quelques conséquences simples de la formule d'Euler”, J. Math. Pures Appl., 19 (1940), 27–43 | MR
[5] Jendrol' S., Madaras T., “On light subgraphs in plane graphs of minimal degree five”, Discuss. Math. Graph Theory, 16 (1996), 207–217 | DOI | MR | Zbl
[6] Van den Heuvel J., McGuinness S., “Coloring the square of a planar graph”, J. Graph Theory, 42 (2003), 110–124 | DOI | MR | Zbl
[7] Balogh J., Kochol M., Pluhár A., Yu X., “Covering planar graphs with forests”, J. Comb. Theory, Ser. B., 94 (2005), 147–158 | DOI | MR | Zbl
[8] Harant J., Jendrol' S., “On the existence of specific stars in planar graphs”, Graphs Comb., 23 (2007), 529–543 | DOI | MR | Zbl
[9] Borodin O. V., Ivanova A. O., “Describing (d - 2)-stars at d-vertices, $d\le 5$, in normal plane maps”, Discrete Math, 313:17 (2013), 1700–1709 | DOI | MR | Zbl
[10] Borodin O. V., Ivanova A. O., “Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5”, Discrete Math, 313:17 (2013), 1710–1714 | DOI | MR | Zbl
[11] Borodin O. V., Ivanova A. O., Jensen T. R., “5-stars of low weight in normal plane maps with minimum degree 5”, Discuss. Math. Graph Theory, 34:3 (2014), 539–546 | DOI | MR | Zbl
[12] Borodin O. V., Woodall D. R., “Short cycles of low weight in normal plane maps with minimum degree 5”, Discuss. Math. Graph Theory, 18:2 (1998), 159–164 | DOI | MR | Zbl
[13] Ivanova A. O. and Nikiforov D. V., “Describing of neiborhoods of 5-vertices in plane triangulations with minimum degree 5”, Mat. Zam. YaGU, 20:2 (2013), 66–78 | Zbl
[14] Ivanova A. O. and Nikiforov D. V., “Describing of neiborhoods of 5-vertices in plane triangulations with minimum degree 5”, Theoretical and practical issues of the development of scientific thought in the modern world, Sb. statey Mezhdunar. nauchno-pract. konf. (April 29-30, 2013), v. 1, Baskir. Gos. Univ, Ufa, 2013, 13–16
[15] Ivanova A. O. and Nikiforov D. V., “The combinatorial structure of triangulated polyhedra with minimum degree 5”, Sb. statey nauch. konf. studentov, aspirantov i molodyh uchenyh Resp. Sakha (Yakutsk), XVII and XVIII Lavrent'evskie chteniya. Yakutsk, Kirov, 2015, 22–27
[16] Ivanova A. O. and Nikiforov D. V., “Height of 5-stars in normal plane maps with minimum degree 5”, Yak. Math. J., 21:4 (2014), 33–36 | MR | Zbl
[17] Ivanova A. O. and Nikiforov D. V., “Combinatorial structure of triangulated 3-polytopes with minimum degree 5”, VII Int. Conf. Math. Modelling (June 30 - July 4, 2014, Yakutsk), Yakutsk, 2014, 102–103