The structure of neighborhoods of 5-vertices in normal plane maps with minimum degree 5
Matematičeskie zametki SVFU, Tome 23 (2016) no. 1, pp. 56-66 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In 1940, Lebesgue described the neighborhoods of vertices of degree 5 in normal plane maps with minimum degree 5 (M5), presenting only an idea of the proof but not the details. The paper presents a detailed scheme of a complete proof of Lebesgue's description with improving two of its parameters without worsening the others. Moreover, it is present a scheme of the proof of the height of a 5-star (the maximum degree of its vertices) in an M5, which improves the result of O.V.Borodin, A.O.Ivanova, T.R.Yensen (2013).
Keywords: plane graph, normal plane maps, neighborhood.
Mots-clés : structure
@article{SVFU_2016_23_1_a5,
     author = {D. V. Nikiforov},
     title = {The structure of neighborhoods of 5-vertices in normal plane maps with minimum degree 5},
     journal = {Matemati\v{c}eskie zametki SVFU},
     pages = {56--66},
     year = {2016},
     volume = {23},
     number = {1},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a5/}
}
TY  - JOUR
AU  - D. V. Nikiforov
TI  - The structure of neighborhoods of 5-vertices in normal plane maps with minimum degree 5
JO  - Matematičeskie zametki SVFU
PY  - 2016
SP  - 56
EP  - 66
VL  - 23
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a5/
LA  - ru
ID  - SVFU_2016_23_1_a5
ER  - 
%0 Journal Article
%A D. V. Nikiforov
%T The structure of neighborhoods of 5-vertices in normal plane maps with minimum degree 5
%J Matematičeskie zametki SVFU
%D 2016
%P 56-66
%V 23
%N 1
%U http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a5/
%G ru
%F SVFU_2016_23_1_a5
D. V. Nikiforov. The structure of neighborhoods of 5-vertices in normal plane maps with minimum degree 5. Matematičeskie zametki SVFU, Tome 23 (2016) no. 1, pp. 56-66. http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a5/

[1] Appel K., Haken W., “Every planar map is four colorable. I. Discharging”, Illinois J. Math, 21 (1977), 429–490 | MR | Zbl

[2] Wernicke P., “Über den kartographischen Vierfarbensatz”, Math. Ann, 58 (1904), 413–426 | DOI | MR | Zbl

[3] Franklin Ph., “The four colour problem”, Amer. J. Math, 44 (1922), 225–236 | DOI | MR | Zbl

[4] Lebesgue H., “Quelques conséquences simples de la formule d'Euler”, J. Math. Pures Appl., 19 (1940), 27–43 | MR

[5] Jendrol' S., Madaras T., “On light subgraphs in plane graphs of minimal degree five”, Discuss. Math. Graph Theory, 16 (1996), 207–217 | DOI | MR | Zbl

[6] Van den Heuvel J., McGuinness S., “Coloring the square of a planar graph”, J. Graph Theory, 42 (2003), 110–124 | DOI | MR | Zbl

[7] Balogh J., Kochol M., Pluhár A., Yu X., “Covering planar graphs with forests”, J. Comb. Theory, Ser. B., 94 (2005), 147–158 | DOI | MR | Zbl

[8] Harant J., Jendrol' S., “On the existence of specific stars in planar graphs”, Graphs Comb., 23 (2007), 529–543 | DOI | MR | Zbl

[9] Borodin O. V., Ivanova A. O., “Describing (d - 2)-stars at d-vertices, $d\le 5$, in normal plane maps”, Discrete Math, 313:17 (2013), 1700–1709 | DOI | MR | Zbl

[10] Borodin O. V., Ivanova A. O., “Describing 4-stars at 5-vertices in normal plane maps with minimum degree 5”, Discrete Math, 313:17 (2013), 1710–1714 | DOI | MR | Zbl

[11] Borodin O. V., Ivanova A. O., Jensen T. R., “5-stars of low weight in normal plane maps with minimum degree 5”, Discuss. Math. Graph Theory, 34:3 (2014), 539–546 | DOI | MR | Zbl

[12] Borodin O. V., Woodall D. R., “Short cycles of low weight in normal plane maps with minimum degree 5”, Discuss. Math. Graph Theory, 18:2 (1998), 159–164 | DOI | MR | Zbl

[13] Ivanova A. O. and Nikiforov D. V., “Describing of neiborhoods of 5-vertices in plane triangulations with minimum degree 5”, Mat. Zam. YaGU, 20:2 (2013), 66–78 | Zbl

[14] Ivanova A. O. and Nikiforov D. V., “Describing of neiborhoods of 5-vertices in plane triangulations with minimum degree 5”, Theoretical and practical issues of the development of scientific thought in the modern world, Sb. statey Mezhdunar. nauchno-pract. konf. (April 29-30, 2013), v. 1, Baskir. Gos. Univ, Ufa, 2013, 13–16

[15] Ivanova A. O. and Nikiforov D. V., “The combinatorial structure of triangulated polyhedra with minimum degree 5”, Sb. statey nauch. konf. studentov, aspirantov i molodyh uchenyh Resp. Sakha (Yakutsk), XVII and XVIII Lavrent'evskie chteniya. Yakutsk, Kirov, 2015, 22–27

[16] Ivanova A. O. and Nikiforov D. V., “Height of 5-stars in normal plane maps with minimum degree 5”, Yak. Math. J., 21:4 (2014), 33–36 | MR | Zbl

[17] Ivanova A. O. and Nikiforov D. V., “Combinatorial structure of triangulated 3-polytopes with minimum degree 5”, VII Int. Conf. Math. Modelling (June 30 - July 4, 2014, Yakutsk), Yakutsk, 2014, 102–103