Mots-clés : invariant solution
@article{SVFU_2016_23_1_a3,
author = {M. M. Dyshaev and V. E. Fedorov},
title = {Symmetry analysis and exact solutions for a nonlinear model of the financial markets theory},
journal = {Matemati\v{c}eskie zametki SVFU},
pages = {28--45},
year = {2016},
volume = {23},
number = {1},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a3/}
}
TY - JOUR AU - M. M. Dyshaev AU - V. E. Fedorov TI - Symmetry analysis and exact solutions for a nonlinear model of the financial markets theory JO - Matematičeskie zametki SVFU PY - 2016 SP - 28 EP - 45 VL - 23 IS - 1 UR - http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a3/ LA - ru ID - SVFU_2016_23_1_a3 ER -
M. M. Dyshaev; V. E. Fedorov. Symmetry analysis and exact solutions for a nonlinear model of the financial markets theory. Matematičeskie zametki SVFU, Tome 23 (2016) no. 1, pp. 28-45. http://geodesic.mathdoc.fr/item/SVFU_2016_23_1_a3/
[1] Black F., Scholes M., “The pricing of options and corporate liabilities”, J. Political Econ., 81 (1973), 637–659 | DOI | MR
[2] Derman E., Taleb N., “The illusions of dynamic replication”, Quant. Finance, 5:4 (2005), 323–326 | DOI | MR | Zbl
[3] Haug E. G., Taleb N. N., “Option traders use (very) sophisticated heuristics, never the Black-Scholes-Merton formula”, J. Econ. Behavior Organization, 77:2 (2011), 97–106 | DOI | MR
[4] Sircar K. R., Papanicolaou G., “General Black-Scholes models accounting for increased market volatility from hedging strategies”, Appl. Math. Finance, 5 (1998), 45–82 | DOI | Zbl
[5] Frey R., Stremme A., “Market volatility and feedback effects from dynamic hedging”, Math. Finance, 7:4 (1997), 351–374 | DOI | MR | Zbl
[6] Schönbucher P., Wilmott P., “The feedback effect of hedging in illiquid markets”, SIAM J. Appl. Math., 2000, 232–272 | DOI | MR | Zbl
[7] Brandimarte P., Numerical methods in finance economics, John Wiley Sons Publ., Hoboken, NJ, 2004 | MR
[8] Morelli M. J., Montagna G., Nicrosini O., Treccani M., Farina M., Amato P., “Pricing financial derivatives with neural networks”, Phys. A., 338 (2004), 160–165 | DOI
[9] Ovsiannikov L. V., Group Analysis of Differential Equations, Nauka, Moscow, 1978 | MR
[10] Gazizov R. K., Ibragimov N. H., “Lie symmetry analysis of differential equations in finance”, Nonlinear Dyn., 17 (1998), 387–407 | DOI | MR | Zbl
[11] Chirkunov Yu. A. and Khabirov S. V., Elements of symmetry analysis of differential equations of continuum mechanics, NGTU, Novosibirsk, 2012
[12] Bordag L. A., Chmakova A. Y., “Explicit solutions for a nonlinear model of financial derivatives”, Int. J. Theor. Appl. Finance, 10:1 (2007), 1–21 | DOI | MR | Zbl
[13] Bordag L. A., Frey R., “Pricing options in illiquid markets: symmetry reductions and exact solutions”, Nonlinear models in mathematical finance: New research trends in option pricing, ed. M. Ehrhardt, Nova Sci. Publ., Inc., New York, 2008, 103–130 | MR
[14] Bordag L. A., “On option-valuation in illiquid markets: invariant solutions to a nonlinear model”, Mathematical control theory and finance, ed. A. Sarychev, A. Shiryaev, M. Guerra, and M. R. Grossinho, Springer-Verl., Berlin; Heidelberg, 2008, 71–94 | DOI | MR | Zbl
[15] Mikaelyan A., Analytical study of the Schönbucher-Wilmott model of the feedback effect in illiquid markets, Halmstad Univ., 2009
[16] Bordag L. A., Mikaelyan A., “Models of self-financing hedging strategies in illiquid markets: symmetry reductions and exact solutions”, J. Lett. Math. Phys, 96:1-3 (2011), 191–207 | DOI | MR | Zbl