Voir la notice de l'acte provenant de la source Numdam
@article{SPS_1990__24__300_0, author = {Cellier, Dominique and Fourdrinier, Dominique}, title = {Sur les lois \`a sym\'etrie elliptique}, journal = {S\'eminaire de probabilit\'es de Strasbourg}, pages = {300--328}, publisher = {Springer - Lecture Notes in Mathematics}, volume = {24}, year = {1990}, mrnumber = {1071547}, zbl = {0701.62062}, language = {fr}, url = {http://geodesic.mathdoc.fr/item/SPS_1990__24__300_0/} }
TY - JOUR AU - Cellier, Dominique AU - Fourdrinier, Dominique TI - Sur les lois à symétrie elliptique JO - Séminaire de probabilités de Strasbourg PY - 1990 SP - 300 EP - 328 VL - 24 PB - Springer - Lecture Notes in Mathematics UR - http://geodesic.mathdoc.fr/item/SPS_1990__24__300_0/ LA - fr ID - SPS_1990__24__300_0 ER -
%0 Journal Article %A Cellier, Dominique %A Fourdrinier, Dominique %T Sur les lois à symétrie elliptique %J Séminaire de probabilités de Strasbourg %D 1990 %P 300-328 %V 24 %I Springer - Lecture Notes in Mathematics %U http://geodesic.mathdoc.fr/item/SPS_1990__24__300_0/ %G fr %F SPS_1990__24__300_0
Cellier, Dominique; Fourdrinier, Dominique. Sur les lois à symétrie elliptique. Séminaire de probabilités de Strasbourg, Tome 24 (1990), pp. 300-328. http://geodesic.mathdoc.fr/item/SPS_1990__24__300_0/
[1] Fonctions caractéristiques et mesures planes invariantes par rotation. (1970) - Séminaire de Probabilités V - Lecture Notes in mathematics 191 pp. 1-16. | MR | mathdoc-id
).[2] On the theory of elliptically contoured distributions. (1981) - Journal of Multivariate Analysis 11, pp.368-385. | Zbl | MR
), ) and ).[3] Controlled shrinkage estimators (a class of estimators better than the least squares estimator, with respect to a general quadratic loss, for normal observations). (1989) - Statistics 20, 1 pp. 1-10. | Zbl | MR
), ) and ).[4] Robust shrinkage estimators of the location parameter for elliptically symmetric distributions. (1989) - Journal of Multivariate Analysis 29, pp. 39-52. | Zbl | MR
), ) and ).[5] Elliptically symmetric distributions : a review and bibliography. (1981) - Internat. Statist. Rev. 49, 67-74. | Zbl | MR
).[6] A characterization of spherical distributions. (1986) - Journal of Multivariate Analysis 20, pp. 272-276. | Zbl | MR
).[7] Distribution theory of spherical distributions and a location scale parameter generalization. (1970) - Sankhya A. 32 pp. 419-430. | Zbl | MR
).[8] The coordinate-free approach to Gauss-Markov and its application to missing and extra observations. (1961) - Proceedings Fourth Berkeley Symp. Math. Statist. Probab., 1, pp. 435-451. | Zbl | MR
).[9] When are Gauss-Markov and least squares estimators the same ? A coordinate-free approach. (1968) - Ann. Math. Statist. 39, pp. 70-75. | Zbl | MR
).[10] The Haar Integral (1965) - D. Van Nostrand Company. | Zbl | MR
).[11] Une condition de validité pour le test F. (1977) - Statistique et Analyse des Données 1, pp. 37-60.
).[12] A unifed approach to coordinate-free multivariate analysis. (1977) - Ann. Inst. Statist. Math. A 29, pp. 43-57. | Zbl | MR
).[13] Coordinate-Free Multivariate Statistics. (1987) - Clarendon Press - Oxford. | Zbl | MR
).