Molchanov's criterion for compactness of the resolvent for a nonselfadjoint Sturm–Liouville operator
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1249-1268 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A Molchanov-type condition is considered in applications to ordinary differential operators of arbitrary order with complex-valued coefficients. It is proved to be a necessary condition for the compactness of the resolvent for a wide class of operators of this type. A counterexample is given showing that this condition does not suffice for the compactness of the resolvent for a Sturm–Liouville operator with nonnegative real part of the potential. Molchanov's criterion is generalized to potentials taking values in a sector bounded away from the negative half-axis and more narrow than a half-plane. Bibliography: 18 titles.
Keywords: nonselfadjoint Sturm–Liouville operator, discreteness of spectrum, compactness of resolvent, Molchanov's criterion.
@article{SM_2024_215_9_a5,
     author = {S. N. Tumanov},
     title = {Molchanov's criterion for compactness of the resolvent for a~nonselfadjoint {Sturm{\textendash}Liouville} operator},
     journal = {Sbornik. Mathematics},
     pages = {1249--1268},
     year = {2024},
     volume = {215},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a5/}
}
TY  - JOUR
AU  - S. N. Tumanov
TI  - Molchanov's criterion for compactness of the resolvent for a nonselfadjoint Sturm–Liouville operator
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1249
EP  - 1268
VL  - 215
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a5/
LA  - en
ID  - SM_2024_215_9_a5
ER  - 
%0 Journal Article
%A S. N. Tumanov
%T Molchanov's criterion for compactness of the resolvent for a nonselfadjoint Sturm–Liouville operator
%J Sbornik. Mathematics
%D 2024
%P 1249-1268
%V 215
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2024_215_9_a5/
%G en
%F SM_2024_215_9_a5
S. N. Tumanov. Molchanov's criterion for compactness of the resolvent for a nonselfadjoint Sturm–Liouville operator. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1249-1268. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a5/

[1] A. M. Molchanov, “On conditions for discreteness of the spectrum of self-adjoint differential equations of the second order”, Tr. Mosk. Mat. Obshch., 2, GITTL, Moscow, 1953, 169–199 (Russian) | MR | Zbl

[2] I. Brinck, “Self-adjointness and spectra of Sturm–Liouville operators”, Math. Scand., 7 (1959), 219–239 | DOI | MR | Zbl

[3] V. B. Lidskii, “A non-selfadjoint operator of Sturm-Liouville type with a discrete spectrum”, Tr. Mosk. Mat. Obshch., 9, GIFML, Moscow, 1960, 45–79 (Russian) | MR | Zbl

[4] R. S. Ismagilov, “Conditions for the semiboundedness and discreteness of the spectrum for one-dimensional differential equations”, Soviet Math. Dokl., 2 (1961), 1137–1140 | MR | Zbl

[5] M. Sh. Birman and B. S. Pavlov, “On the complete continuity of certain imbedding operators”, Vestn. Leningrad. Univ. Ser. Mat. Mekh. Astronom., 16:1 (1961), 61–74 (Russian) | MR | Zbl

[6] B. M. Levitan and G. A. Suvorchenkova, “Sufficient conditions for a discrete spectrum in the case of a Sturm–Liouville equation with operator coefficients”, Funct. Anal. Appl., 2:2 (1968), 147–152 | DOI | MR | Zbl

[7] D. Fortunato, “Remarks on the non self-adjoint Schrödinger operator”, Comment. Math. Univ. Carolin., 20:1 (1979), 79–93 | MR | Zbl

[8] R. S. Ismagilov and A. G. Kostyuchenko, “On the spectrum of a vector Schrödinger operator”, Funct. Anal. Appl., 41:1 (2007), 31–41 | DOI | MR | Zbl

[9] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946, 175 pp. | MR | Zbl

[10] M. A. Naimark, “Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second order on a semi-axis”, Tr. Mosk. Mat. Obshch., 3, GITTL, Moscow, 1954, 181–270 (Russian) | MR | Zbl

[11] E. S. Birger and G. A. Kaljabin, “The theory of Weil limit-circles in the case of non-self-adjoint second-order differential-equation systems”, Differ. Equ., 12:9 (1977), 1077–1084 | MR | Zbl

[12] Kh. K. Ishkin, “Spectral properties of the nonsectorial Sturm–Liouville operator on the semiaxis”, Math. Notes, 113:5 (2023), 663–679 | DOI | MR | Zbl

[13] M. A. Naimark, Linear differential operators, 3d ed., Fizmatlit, Moscow, 2010, 528 pp. ; English transl. of 1st ed., v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | Zbl | MR | MR | Zbl

[14] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | Zbl

[15] B. M. Brown, D. K. R. McCormack, W. D. Evans and M. Plum, “On the spectrum of second-order differential operators with complex coefficients”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455:1984 (1999), 1235–1257 | DOI | MR | Zbl

[16] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl

[17] S. N. Tumanov, “One condition for the discreteness of the spectrum and compactness of the resolvent of a nonsectorial Sturm–Liouville operator on a semiaxis”, Dokl. Math., 107:2 (2023), 117–119 | DOI | MR | Zbl

[18] V. A. Zorich, Mathematical analysis, v. II, Universitext, 2nd ed., Springer, Heidelberg, 2016, xx+720 pp. | DOI | MR | Zbl