@article{SM_2024_215_9_a5,
author = {S. N. Tumanov},
title = {Molchanov's criterion for compactness of the resolvent for a~nonselfadjoint {Sturm{\textendash}Liouville} operator},
journal = {Sbornik. Mathematics},
pages = {1249--1268},
year = {2024},
volume = {215},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a5/}
}
S. N. Tumanov. Molchanov's criterion for compactness of the resolvent for a nonselfadjoint Sturm–Liouville operator. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1249-1268. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a5/
[1] A. M. Molchanov, “On conditions for discreteness of the spectrum of self-adjoint differential equations of the second order”, Tr. Mosk. Mat. Obshch., 2, GITTL, Moscow, 1953, 169–199 (Russian) | MR | Zbl
[2] I. Brinck, “Self-adjointness and spectra of Sturm–Liouville operators”, Math. Scand., 7 (1959), 219–239 | DOI | MR | Zbl
[3] V. B. Lidskii, “A non-selfadjoint operator of Sturm-Liouville type with a discrete spectrum”, Tr. Mosk. Mat. Obshch., 9, GIFML, Moscow, 1960, 45–79 (Russian) | MR | Zbl
[4] R. S. Ismagilov, “Conditions for the semiboundedness and discreteness of the spectrum for one-dimensional differential equations”, Soviet Math. Dokl., 2 (1961), 1137–1140 | MR | Zbl
[5] M. Sh. Birman and B. S. Pavlov, “On the complete continuity of certain imbedding operators”, Vestn. Leningrad. Univ. Ser. Mat. Mekh. Astronom., 16:1 (1961), 61–74 (Russian) | MR | Zbl
[6] B. M. Levitan and G. A. Suvorchenkova, “Sufficient conditions for a discrete spectrum in the case of a Sturm–Liouville equation with operator coefficients”, Funct. Anal. Appl., 2:2 (1968), 147–152 | DOI | MR | Zbl
[7] D. Fortunato, “Remarks on the non self-adjoint Schrödinger operator”, Comment. Math. Univ. Carolin., 20:1 (1979), 79–93 | MR | Zbl
[8] R. S. Ismagilov and A. G. Kostyuchenko, “On the spectrum of a vector Schrödinger operator”, Funct. Anal. Appl., 41:1 (2007), 31–41 | DOI | MR | Zbl
[9] E. C. Titchmarsh, Eigenfunction expansions associated with second-order differential equations, Clarendon Press, Oxford, 1946, 175 pp. | MR | Zbl
[10] M. A. Naimark, “Investigation of the spectrum and the expansion in eigenfunctions of a nonselfadjoint operator of the second order on a semi-axis”, Tr. Mosk. Mat. Obshch., 3, GITTL, Moscow, 1954, 181–270 (Russian) | MR | Zbl
[11] E. S. Birger and G. A. Kaljabin, “The theory of Weil limit-circles in the case of non-self-adjoint second-order differential-equation systems”, Differ. Equ., 12:9 (1977), 1077–1084 | MR | Zbl
[12] Kh. K. Ishkin, “Spectral properties of the nonsectorial Sturm–Liouville operator on the semiaxis”, Math. Notes, 113:5 (2023), 663–679 | DOI | MR | Zbl
[13] M. A. Naimark, Linear differential operators, 3d ed., Fizmatlit, Moscow, 2010, 528 pp. ; English transl. of 1st ed., v. I, II, Frederick Ungar Publishing Co., New York, 1967, 1968, xiii+144 pp., xv+352 pp. | MR | Zbl | MR | MR | Zbl
[14] T. Kato, Perturbation theory for linear operators, Grundlehren Math. Wiss., 132, Springer-Verlag New York, Inc., New York, 1966, xix+592 pp. | DOI | MR | Zbl
[15] B. M. Brown, D. K. R. McCormack, W. D. Evans and M. Plum, “On the spectrum of second-order differential operators with complex coefficients”, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci., 455:1984 (1999), 1235–1257 | DOI | MR | Zbl
[16] I. C. Gohberg and M. G. Krein, Introduction to the theory of linear nonselfadjoint operators, Transl. Math. Monogr., 18, Amer. Math. Soc., Providence, RI, 1969, xv+378 pp. | MR | MR | Zbl | Zbl
[17] S. N. Tumanov, “One condition for the discreteness of the spectrum and compactness of the resolvent of a nonsectorial Sturm–Liouville operator on a semiaxis”, Dokl. Math., 107:2 (2023), 117–119 | DOI | MR | Zbl
[18] V. A. Zorich, Mathematical analysis, v. II, Universitext, 2nd ed., Springer, Heidelberg, 2016, xx+720 pp. | DOI | MR | Zbl