Mots-clés : eikonal equation
@article{SM_2024_215_9_a4,
author = {P. D. Lebedev and A. A. Uspenskii},
title = {Numerical-analytic construction of a~generalized solution to the eikonal equation in the plane case},
journal = {Sbornik. Mathematics},
pages = {1224--1248},
year = {2024},
volume = {215},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a4/}
}
TY - JOUR AU - P. D. Lebedev AU - A. A. Uspenskii TI - Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case JO - Sbornik. Mathematics PY - 2024 SP - 1224 EP - 1248 VL - 215 IS - 9 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a4/ LA - en ID - SM_2024_215_9_a4 ER -
P. D. Lebedev; A. A. Uspenskii. Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1224-1248. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a4/
[1] S. N. Kružkov (Kruzhkov), “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR-Sb., 27:3 (1975), 406–446 | DOI | MR | Zbl
[2] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl
[3] A. I. Subbotin, Generalized solutions of first-order PDEs. The dynamical optimization perspective, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1995, xii+312 pp. | DOI | MR | Zbl
[4] O. A. Oleĭnik, “Discontinuous solutions of non-linear differential equations”, Amer. Math. Soc. Transl. Ser. 2, 26, Amer. Math. Soc., Providence, RI, 1963, 95–172 | DOI | MR | MR | Zbl
[5] N. N. Krasovskiĭ and A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988, xii+517 pp. | MR | Zbl
[6] V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp. | DOI | MR | Zbl
[7] A. V. Borovskikh, “The two-dimensional eikonal equation”, Siberian Math. J., 47:5 (2006), 813–834 | DOI | MR | Zbl
[8] J. A. Sethian and A. Vladimirsky, “Fast methods for the Eikonal and related Hamilton–Jacobi equations on unstructured meshes”, Proc. Natl. Acad. Sci. USA, 97:11 (2000), 5699–5703 | DOI | MR | Zbl
[9] S. I. Kabanikhin and O. I. Ktivorotko, “Numerical solution of the eikonal equation”, Sibirsk. Elektron. Mat. Izv., 10 (2013), 28–34 (Russian)
[10] G. V. Papakov, A. M. Taras'ev and A. A. Uspenskii, “Numerical approximations of generalized solutions of the Hamilton–Jacobi equations”, J. Appl. Math. Mech., 60:4 (1996), 567–578 | DOI | MR | Zbl
[11] P. D. Lebedev, A. A. Uspenskii and V. N. Ushakov, “Construction of a minimax solution for an eikonal-type equation”, Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S191–S201 | DOI | MR | Zbl
[12] P. D. Lebedev and A. A. Uspenskii, “Conditions for the transversality of branches of a solution of a nonlinear equation in the time-optimal problem with circular indicatrix”, Tr. Inst. Mat. Mekh., 14, no. 4, 2008, 82–99 (Russian)
[13] A. A. Uspenskii, “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Tr. Inst. Mat. Mekh., 21, no. 1, 2015, 250–263 | MR
[14] P. D. Lebedev and A. A. Uspenskii, “Constructing the solution of a time-optimality control problem under violation of the smoothness of the curvature of the boundary of the target set”, Izv. Inst. Mat. Inform., 53 (2019), 98–114 (Russian) | DOI | MR | Zbl
[15] V. V. Nemytskiĭ, “The fixed point method in analysis”, Amer. Math. Soc. Transl. Ser. 2, 34, Amer. Math. Soc., Providence, RI, 1963, 1–37
[16] V. N. Ushakov and A. A. Uspenskii, “$\alpha$-sets in finite-dimensional Euclidean spaces and their properties”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 95–120 | DOI | MR | Zbl
[17] Th. Bröcker, Differentiable germs and catastrophes, Transl. from the German by L. Lander, London Math. Soc. Lecture Note Ser., 17, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1975, vi+179 pp. | DOI | MR | Zbl
[18] V. F. Dem'yanov and L. V. Vasil'ev, Nondifferentiable optimization, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1985, xvii+452 pp. | MR | MR | Zbl | Zbl
[19] E. Hopf, “Generalized solutions of non-linear equations of first order”, J. Math. Mech., 14:6 (1965), 951–973 | MR | Zbl
[20] M. Bardi and L. C. Evans, “On Hopf's formulas for solutions of Hamilton–Jacobi equations”, Nonlinear Anal., 8:11 (1984), 1373–1381 | DOI | MR | Zbl
[21] A. M. Taras'ev, A. A. Uspenskij and V. N. Ushakov, “Approximation schemes and finite-difference operators for constructing generalized solutions of Hamilton–Jacobi equations”, J. Comput. Syst. Sci. Int., 33:6 (1995), 127–139
[22] J. W. Bruce and P. J. Giblin, Curves and singularities. A geometrical introduction to singularity theory, Cambridge Univ. Press, Cambridge, 1984, xii+222 pp. | MR | Zbl
[23] A. A. Uspenskii and P. D. Lebedev, “Degeneracy of second-order conditions in the construction of pseudovertices of the boundary set for the eikonal equation”, Vestn. Humanities Univ., 2 (2016), 31–46 (Russian)
[24] A. R. Alimov and I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | MR | Zbl
[25] N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets”, Dokl. Akad. Nauk SSSR, 118:1 (1958), 17–19 (Russian) | MR | Zbl
[26] V. D. Sedykh, “On the topology of symmetry sets of smooth submanifolds in $\mathbb{R}^{k}$”, Singularity theory and its applications, Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006, 401–419 | DOI | MR | Zbl
[27] R. N. Shcherbakov and L. F. Pichurin, Differentials aiding geometry, Prosveshchenie, Moscow, 1982, 191 pp. (Russian)
[28] A. D. Polyanin, Explicit solutions of differential, integral, functional and other mathematics equations, Publishing House of the Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 2023, 600 pp. (Russian)
[29] P. D. Lebedev and A. A. Uspenskii, Software package for constructing wave fronts and the function of Euclidean distance to a nonconvex compact set, State Certificate of Software Registration no. 2017662074 dated 27.10.2017