Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1224-1248 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

In the 1970s Kruzhkov introduced the concept of a generalized solution to the eikonal equation, and, for a medium of constant refractive index, indicated a class of functions containing the generalized solution to the Dirichlet boundary value problem. We present constructive methods for finding such a solution in the plane case. Nonsmooth singularities are known to develop in generalized solutions owing to the presence of pseudovertices, which are singular points of the boundary of the boundary set. Identifying such pseudovertices is related to finding fixed points of mappings formed in a local reparameterization of this boundary. We obtain necessary conditions for the existence of pseudovertices in the case when the curvature of the parametrically defined boundary of boundary sets is not smooth. These conditions are written as an equation for the pseudovertex marker (a numerical measure of the local nonconvexity of the boundary set). This equation, which has the typical structure of constructions involving fixed points, can be reduced to an algebraic equation. The solution of this equation (the marker) is found analytically if the curvature of the boundary of the boundary set has a nonsmooth extremum at a pseudovertex. We also give an example of a numerical-analytic construction of a generalized solution to the boundary value problem, with indication of the singular set and the evolution of wave fronts. Bibliography: 29 titles.
Keywords: generalized solution, singular set, pseudovertex, fixed point.
Mots-clés : eikonal equation
@article{SM_2024_215_9_a4,
     author = {P. D. Lebedev and A. A. Uspenskii},
     title = {Numerical-analytic construction of a~generalized solution to the eikonal equation in the plane case},
     journal = {Sbornik. Mathematics},
     pages = {1224--1248},
     year = {2024},
     volume = {215},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a4/}
}
TY  - JOUR
AU  - P. D. Lebedev
AU  - A. A. Uspenskii
TI  - Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1224
EP  - 1248
VL  - 215
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a4/
LA  - en
ID  - SM_2024_215_9_a4
ER  - 
%0 Journal Article
%A P. D. Lebedev
%A A. A. Uspenskii
%T Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case
%J Sbornik. Mathematics
%D 2024
%P 1224-1248
%V 215
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2024_215_9_a4/
%G en
%F SM_2024_215_9_a4
P. D. Lebedev; A. A. Uspenskii. Numerical-analytic construction of a generalized solution to the eikonal equation in the plane case. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1224-1248. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a4/

[1] S. N. Kružkov (Kruzhkov), “Generalized solutions of the Hamilton–Jacobi equations of eikonal type. I. Formulation of the problems; existence, uniqueness and stability theorems; some properties of the solutions”, Math. USSR-Sb., 27:3 (1975), 406–446 | DOI | MR | Zbl

[2] M. G. Crandall and P.-L. Lions, “Viscosity solutions of Hamilton–Jacobi equations”, Trans. Amer. Math. Soc., 277:1 (1983), 1–42 | DOI | MR | Zbl

[3] A. I. Subbotin, Generalized solutions of first-order PDEs. The dynamical optimization perspective, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 1995, xii+312 pp. | DOI | MR | Zbl

[4] O. A. Oleĭnik, “Discontinuous solutions of non-linear differential equations”, Amer. Math. Soc. Transl. Ser. 2, 26, Amer. Math. Soc., Providence, RI, 1963, 95–172 | DOI | MR | MR | Zbl

[5] N. N. Krasovskiĭ and A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988, xii+517 pp. | MR | Zbl

[6] V. I. Arnold, Singularities of caustics and wave fronts, Math. Appl. (Soviet Ser.), 62, Kluwer Acad. Publ., Dordrecht, 1990, xiv+259 pp. | DOI | MR | Zbl

[7] A. V. Borovskikh, “The two-dimensional eikonal equation”, Siberian Math. J., 47:5 (2006), 813–834 | DOI | MR | Zbl

[8] J. A. Sethian and A. Vladimirsky, “Fast methods for the Eikonal and related Hamilton–Jacobi equations on unstructured meshes”, Proc. Natl. Acad. Sci. USA, 97:11 (2000), 5699–5703 | DOI | MR | Zbl

[9] S. I. Kabanikhin and O. I. Ktivorotko, “Numerical solution of the eikonal equation”, Sibirsk. Elektron. Mat. Izv., 10 (2013), 28–34 (Russian)

[10] G. V. Papakov, A. M. Taras'ev and A. A. Uspenskii, “Numerical approximations of generalized solutions of the Hamilton–Jacobi equations”, J. Appl. Math. Mech., 60:4 (1996), 567–578 | DOI | MR | Zbl

[11] P. D. Lebedev, A. A. Uspenskii and V. N. Ushakov, “Construction of a minimax solution for an eikonal-type equation”, Proc. Steklov Inst. Math. (Suppl.), 263, suppl. 2 (2008), S191–S201 | DOI | MR | Zbl

[12] P. D. Lebedev and A. A. Uspenskii, “Conditions for the transversality of branches of a solution of a nonlinear equation in the time-optimal problem with circular indicatrix”, Tr. Inst. Mat. Mekh., 14, no. 4, 2008, 82–99 (Russian)

[13] A. A. Uspenskii, “Necessary conditions for the existence of pseudovertices of the boundary set in the Dirichlet problem for the eikonal equation”, Tr. Inst. Mat. Mekh., 21, no. 1, 2015, 250–263 | MR

[14] P. D. Lebedev and A. A. Uspenskii, “Constructing the solution of a time-optimality control problem under violation of the smoothness of the curvature of the boundary of the target set”, Izv. Inst. Mat. Inform., 53 (2019), 98–114 (Russian) | DOI | MR | Zbl

[15] V. V. Nemytskiĭ, “The fixed point method in analysis”, Amer. Math. Soc. Transl. Ser. 2, 34, Amer. Math. Soc., Providence, RI, 1963, 1–37

[16] V. N. Ushakov and A. A. Uspenskii, “$\alpha$-sets in finite-dimensional Euclidean spaces and their properties”, Vestn. Udmurt. Univ. Mat. Mekh. Komp'yut. Nauki, 26:1 (2016), 95–120 | DOI | MR | Zbl

[17] Th. Bröcker, Differentiable germs and catastrophes, Transl. from the German by L. Lander, London Math. Soc. Lecture Note Ser., 17, Cambridge Univ. Press, Cambridge–New York–Melbourne, 1975, vi+179 pp. | DOI | MR | Zbl

[18] V. F. Dem'yanov and L. V. Vasil'ev, Nondifferentiable optimization, Transl. Ser. Math. Engrg., Optimization Software, Inc., Publications Division, New York, 1985, xvii+452 pp. | MR | MR | Zbl | Zbl

[19] E. Hopf, “Generalized solutions of non-linear equations of first order”, J. Math. Mech., 14:6 (1965), 951–973 | MR | Zbl

[20] M. Bardi and L. C. Evans, “On Hopf's formulas for solutions of Hamilton–Jacobi equations”, Nonlinear Anal., 8:11 (1984), 1373–1381 | DOI | MR | Zbl

[21] A. M. Taras'ev, A. A. Uspenskij and V. N. Ushakov, “Approximation schemes and finite-difference operators for constructing generalized solutions of Hamilton–Jacobi equations”, J. Comput. Syst. Sci. Int., 33:6 (1995), 127–139

[22] J. W. Bruce and P. J. Giblin, Curves and singularities. A geometrical introduction to singularity theory, Cambridge Univ. Press, Cambridge, 1984, xii+222 pp. | MR | Zbl

[23] A. A. Uspenskii and P. D. Lebedev, “Degeneracy of second-order conditions in the construction of pseudovertices of the boundary set for the eikonal equation”, Vestn. Humanities Univ., 2 (2016), 31–46 (Russian)

[24] A. R. Alimov and I. G. Tsar'kov, “Connectedness and solarity in problems of best and near-best approximation”, Russian Math. Surveys, 71:1 (2016), 1–77 | DOI | MR | Zbl

[25] N. V. Efimov and S. B. Stechkin, “Some properties of Chebyshev sets”, Dokl. Akad. Nauk SSSR, 118:1 (1958), 17–19 (Russian) | MR | Zbl

[26] V. D. Sedykh, “On the topology of symmetry sets of smooth submanifolds in $\mathbb{R}^{k}$”, Singularity theory and its applications, Adv. Stud. Pure Math., 43, Math. Soc. Japan, Tokyo, 2006, 401–419 | DOI | MR | Zbl

[27] R. N. Shcherbakov and L. F. Pichurin, Differentials aiding geometry, Prosveshchenie, Moscow, 1982, 191 pp. (Russian)

[28] A. D. Polyanin, Explicit solutions of differential, integral, functional and other mathematics equations, Publishing House of the Institute for Problems in Mechanics of the Russian Academy of Sciences, Moscow, 2023, 600 pp. (Russian)

[29] P. D. Lebedev and A. A. Uspenskii, Software package for constructing wave fronts and the function of Euclidean distance to a nonconvex compact set, State Certificate of Software Registration no. 2017662074 dated 27.10.2017