Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1202-1223 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study approximations of a function $f\in W^r_{l^2_{\omega}(\Omega_\delta)}$, $\omega(x)=e^{-x}(1-e^{-\delta})$, by the de la Vallée Poussin means of partial sums of the Fourier series in the Sobolev orthonormal system of polynomials $\{m_{n,N}^{0,r}(x)\}$ generated by the system of Meixner polynomials. Bibliography: 32 titles.
Keywords: Sobolev type inner product, Fourier series, Meixner polynomials, approximation properties
Mots-clés : de la Vallée Poussin means.
@article{SM_2024_215_9_a3,
     author = {R. M. Gadzhimirzaev},
     title = {Approximation properties of {de~la~Vall\'ee} {Poussin} means of~partial {Fourier} series in {Meixner{\textendash}Sobolev} polynomials},
     journal = {Sbornik. Mathematics},
     pages = {1202--1223},
     year = {2024},
     volume = {215},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a3/}
}
TY  - JOUR
AU  - R. M. Gadzhimirzaev
TI  - Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1202
EP  - 1223
VL  - 215
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a3/
LA  - en
ID  - SM_2024_215_9_a3
ER  - 
%0 Journal Article
%A R. M. Gadzhimirzaev
%T Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials
%J Sbornik. Mathematics
%D 2024
%P 1202-1223
%V 215
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2024_215_9_a3/
%G en
%F SM_2024_215_9_a3
R. M. Gadzhimirzaev. Approximation properties of de la Vallée Poussin means of partial Fourier series in Meixner–Sobolev polynomials. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1202-1223. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a3/

[1] A. F. Nikiforov, S. K. Suslov and V. B. Uvarov, Classical orthogonal polynomials of a discrete variable, Springer Ser. Comput. Phys., Springer-Verlag, Berlin, 1991, xvi+374 pp. | DOI | MR | MR | Zbl | Zbl

[2] I. I. Sharapudinov, Polynomials orthogonal on grids. Theory and applications, Daghestan Pedagogical University publishing house, Makhachkala, 1997, 252 pp. (Russian)

[3] J. Meixner, “Orthogonale Polynomsysteme mit einer besonderen Gestalt der erzeugenden Funktion”, J. London Math. Soc., 9:1 (1934), 6–13 | DOI | MR | Zbl

[4] V. P. Perov, Applied spectral estimation theory, Nauka, Moscow, 1982, 432 pp. (Russian) | MR

[5] D. R. Gilmin, R. G. Keys and M. S. Keener, “The mean-square error for a recursive moving polynomial predictor”, IEEE Trans. Syst. Man Cybern., 9:5 (1979), 301–304 | DOI | Zbl

[6] I. I. Sharapudinov, “The use of Meixner multinomials in the approximate calculation of integrals”, Soviet Math. (Izv. VUZ), 30:2 (1986), 120–122 | MR | Zbl

[7] I. I. Sharapudinov, “Asymptotics and weighted estimates of Meixner polynomials orthogonal on the grid $\{0,\delta,2\delta,\dots\}$”, Math. Notes, 62:4 (1997), 501–512 | DOI | MR | Zbl

[8] V. N. Sorokin, “On multiple orthogonal polynomials for discrete Meixner measures”, Sb. Math., 201:10 (2010), 1539–1561 | DOI | MR | Zbl

[9] X. S. Wang and R. Wong, “Global asymptotics of the Meixner polynomials”, Asymptot. Anal., 75:3–4 (2011), 211–231 | DOI | MR | Zbl

[10] A. I. Aptekarev and D. N. Tulyakov, “Asymptotics of Meixner polynomials and Christoffel–Darboux kernels”, Trans. Moscow Math. Soc., 2012 (2012), 67–106 | DOI | MR | Zbl

[11] A. Aptekarev and J. Arvesú, “Asymptotics for multiple Meixner polynomials”, J. Math. Anal. Appl., 411:2 (2014), 485–505 | DOI | MR | Zbl

[12] A. A. Gonchar and E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of extremal polynomials”, Math. USSR-Sb., 53:1 (1986), 119–130 | DOI | MR | Zbl

[13] A. A. Gonchar and E. A. Rakhmanov, “On the equilibrium problem for vector potentials”, Russian Math. Surveys, 40:4 (1985), 183–184 | DOI | MR | Zbl

[14] E. A. Rakhmanov, “Equilibrium measure and the distribution of zeros of the extremal polynomials of a discrete variable”, Sb. Math., 187:8 (1996), 1213–1228 | DOI | MR | Zbl

[15] P. Barry, P. M. Rajković and M. D. Petković, “An application of Sobolev orthogonal polynomials to the computation of a special Hankel determinant”, Approximation and computation, Springer Optim. Appl., 42, Springer, New York, 2011, 53–60 | DOI | MR | Zbl

[16] B. P. Osilenker, “On Fourier series in generalized eigenfunctions of a discrete Sturm–Liouville operator”, Funct. Anal. Appl., 52:2 (2018), 154–157 | DOI | MR | Zbl

[17] T. Kilpeläinen, “Weighted Sobolev spaces and capacity”, Ann. Acad. Sci. Fenn. Ser. A I Math., 19:1 (1994), 95–113 | MR | Zbl

[18] F. Marcellán and Yuan Xu, “On Sobolev orthogonal polynomials”, Expo. Math., 33:3 (2015), 308–352 | DOI | MR | Zbl

[19] I. I. Sharapudinov, “Sobolev-orthogonal systems of functions and some of their applications”, Russian Math. Surveys, 74:4 (2019), 659–733 | DOI | MR | Zbl

[20] L. Fernández, F. Marcellán, T. E. Pérez and M. A. Piñar, “Sobolev orthogonal polynomials and spectral methods in boundary value problems”, Appl. Numer. Math., 200 (2024), 254–272 | DOI | MR | Zbl

[21] H. Bavinck and H. van Haeringen, “Difference equations for generalized Meixner polynomials”, J. Math. Anal. Appl., 184:3 (1994), 453–463 | DOI | MR | Zbl

[22] H. Bavinck and R. Koekoek, “Difference operators with Sobolev type Meixner polynomials as eigenfunctions”, Comput. Math. Appl., 36:10–12 (1998), 163–177 | DOI | MR | Zbl

[23] I. Area, E. Godoy and F. Marcellán, “Inner products involving differences: the Meixner–Sobolev polynomials”, J. Differ. Equations Appl., 6:1 (2000), 1–31 | DOI | MR | Zbl

[24] S. F. Khwaja and A. B. Olde-Daalhuis, “Uniform asymptotic approximations for the Meixner–Sobolev polynomials”, Anal. Appl. (Singap.), 10:3 (2012), 345–361 | DOI | MR | Zbl

[25] J. J. Moreno-Balcázar, “$\Delta$-Meixner–Sobolev orthogonal polynomials: Mehler–Heine type formula and zeros”, J. Comput. Appl. Math., 284 (2015), 228–234 | DOI | MR | Zbl

[26] R. S. Costas-Santos, A. Soria-Lorente and J.-M. Vilaire, “On polynomials orthogonal with respect to an inner product involving higher-order differences: the Meixner case”, Mathematics, 10:11 (2022), 1952, 16 pp. | DOI

[27] I. I. Sharapudinov and Z. D. Gadzhieva, “Sobolev orthogonal polynomials generated by Meixner polynomials”, Izv. Saratov Univ. Nov. Ser. Mat. Mekh. Informat., 16:3 (2016), 310–321 (Russian) | DOI | MR | Zbl

[28] I. I. Sharapudinov, Z. D. Gadzhieva and P. M. Gadzhimirzaev, “Difference equations and Sobolev orthogonal polynomials generated by Meixner polynomials”, Vladikavkaz Mat. Zh., 19:2 (2017), 58–72 (Russian) | MR | Zbl

[29] I. I. Sharapudinov and T. I. Sharapudinov, “Polynomials orthogonal in the Sobolev sense, generated by Chebyshev polynomials orthogonal on a mesh”, Russian Math. (Izv. VUZ), 61:8 (2017), 59–70 | DOI | MR | Zbl

[30] R. M. Gadzhimirzaev, “Convergence of the Fourier series in Meixner–Sobolev polynomials and approximation properties of its partial sums”, Math. Notes, 115:3 (2024), 301–316 | DOI | MR | Zbl

[31] E. L. Poiani, “Mean Cesàro summability of Laguerre and Hermite series”, Trans. Amer. Math. Soc., 173 (1972), 1–31 | DOI | MR | Zbl

[32] R. M. Gadzhimirzaev, “Estimate of the Lebesgue function of Fourier sums in terms of modified Meixner polynomials”, Math. Notes, 106:4 (2019), 526–536 | DOI | MR | Zbl