Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1182-1201
Voir la notice de l'article provenant de la source Math-Net.Ru
We prove that any group $G$ occurs as $\mathcal{E}(X)$, where $X$ is a $\mathrm{CW}$-complex of finite dimension and $\mathcal{E}(X)$ denotes its group of self-homotopy equivalences. Thus, we generalize a well-known theorem due to Costoya and Viruel [9] asserting that any finite group occurs as $\mathcal{E}(X)$, where $X$ is rational elliptic space.
Bibliography: 12 titles.
Keywords:
Kahn's realisability problem of groups, group of homotopy self-equivalences, Anick's $R$-local homotopy theory.
@article{SM_2024_215_9_a2,
author = {M. Benkhalifa},
title = {Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex},
journal = {Sbornik. Mathematics},
pages = {1182--1201},
publisher = {mathdoc},
volume = {215},
number = {9},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a2/}
}
TY - JOUR
AU - M. Benkhalifa
TI - Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex
JO - Sbornik. Mathematics
PY - 2024
SP - 1182
EP - 1201
VL - 215
IS - 9
PB - mathdoc
UR - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a2/
LA - en
ID - SM_2024_215_9_a2
ER -
M. Benkhalifa. Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1182-1201. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a2/