Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1182-1201

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove that any group $G$ occurs as $\mathcal{E}(X)$, where $X$ is a $\mathrm{CW}$-complex of finite dimension and $\mathcal{E}(X)$ denotes its group of self-homotopy equivalences. Thus, we generalize a well-known theorem due to Costoya and Viruel [9] asserting that any finite group occurs as $\mathcal{E}(X)$, where $X$ is rational elliptic space. Bibliography: 12 titles.
Keywords: Kahn's realisability problem of groups, group of homotopy self-equivalences, Anick's $R$-local homotopy theory.
@article{SM_2024_215_9_a2,
     author = {M. Benkhalifa},
     title = {Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex},
     journal = {Sbornik. Mathematics},
     pages = {1182--1201},
     publisher = {mathdoc},
     volume = {215},
     number = {9},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a2/}
}
TY  - JOUR
AU  - M. Benkhalifa
TI  - Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1182
EP  - 1201
VL  - 215
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a2/
LA  - en
ID  - SM_2024_215_9_a2
ER  - 
%0 Journal Article
%A M. Benkhalifa
%T Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex
%J Sbornik. Mathematics
%D 2024
%P 1182-1201
%V 215
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_9_a2/
%G en
%F SM_2024_215_9_a2
M. Benkhalifa. Every group is the group of self-homotopy equivalences of finite dimensional $\mathrm{CW}$-complex. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1182-1201. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a2/