Generalized Jacobi–Chasles theorem in non-Euclidean spaces
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1159-1181 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The classical Jacobi–Chasles theorem states that tangent lines to a geodesic curve on an $n$-axial ellipsoid in $n$-dimensional Euclidean space are also tangent, along with this ellipsoid, to $n-2$ quadrics confocal with it, which are the same for all points on this geodesic. This result ensures the integrability of the geodesic flow on the ellipsoid. As recent results due to Belozerov and Kibkalo show, a similar theorem also holds for an arbitrary intersection of confocal quadrics in Euclidean space. In the present paper it is shown that the geodesic flow on an intersection of several confocal quadrics in a pseudo-Euclidean space $\mathbb R^{p,q}$ or on a constant curvature space is integrable. As a consequence, a similar result is established for confocal billiards on such intersections. It is also shown that in codimension 2 the last result cannot be extended to surfaces not locally isometric to a space of constant curvature. Bibliography: 15 titles.
Keywords: geodesic flow, integrable system, elliptic coordinates, Jacobi–Chasles theorem.
Mots-clés : confocal quadrics
@article{SM_2024_215_9_a1,
     author = {G. V. Belozerov and A. T. Fomenko},
     title = {Generalized {Jacobi{\textendash}Chasles} theorem in {non-Euclidean} spaces},
     journal = {Sbornik. Mathematics},
     pages = {1159--1181},
     year = {2024},
     volume = {215},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a1/}
}
TY  - JOUR
AU  - G. V. Belozerov
AU  - A. T. Fomenko
TI  - Generalized Jacobi–Chasles theorem in non-Euclidean spaces
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1159
EP  - 1181
VL  - 215
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a1/
LA  - en
ID  - SM_2024_215_9_a1
ER  - 
%0 Journal Article
%A G. V. Belozerov
%A A. T. Fomenko
%T Generalized Jacobi–Chasles theorem in non-Euclidean spaces
%J Sbornik. Mathematics
%D 2024
%P 1159-1181
%V 215
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2024_215_9_a1/
%G en
%F SM_2024_215_9_a1
G. V. Belozerov; A. T. Fomenko. Generalized Jacobi–Chasles theorem in non-Euclidean spaces. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1159-1181. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a1/

[1] C. G. J. Jacobi, “Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution”, J. Reine Angew. Math., 1839:19 (1839), 309–313 | DOI | MR | Zbl

[2] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl

[3] M. Chasles, “Sur les lignes géodésiques et les lignes de courbure des surfaces du second degré”, J. Math. Pures Appl., 11 (1846), 5–20

[4] V. I. Arnold, Mathematical methods of classical mechanics, 3rd ed., Nauka, Moscow, 1989, 472 pp. ; English transl. of 1st ed., Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | Zbl | DOI | MR | Zbl

[5] G. V. Belozerov, “Integrability of a geodesic flow on the intersection of several confocal quadric”, Dokl. Math., 107:1 (2023), 1–3 | DOI | MR | Zbl

[6] G. V. Belozerov, “Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$”, Sb. Math., 214:7 (2023), 897–918 | DOI | MR | Zbl

[7] B. Khesin and S. Tabachnikov, “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221:4 (2009), 1364–1396 | DOI | MR | Zbl

[8] V. Dragović and M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, J. Math. Sci. (N.Y.), 223:6 (2017), 686–694 | DOI | MR | Zbl

[9] E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci. (N.Y.), 259:5 (2021), 656–675 | DOI | MR | Zbl

[10] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28 | DOI | MR | Zbl

[11] V. Dragović and M. Radnović, “Bicentennial of the Great Poncelet Theorem (1813–2013): current advances”, Bull. Amer. Math. Soc. (N.S.), 51:3 (2014), 373–445 | DOI | MR | Zbl

[12] V. V. Kozlov and D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl

[13] S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 | DOI | MR | Zbl

[14] P. M. Morse and H. Feshbach, Methods of theoretical physics, v. 1, 2, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953, xl+1978 pp. | MR | Zbl

[15] S. Kobayashi and K. Nomizu, Foundations of differential geometry, v. I, II, Intersci. Tracts Pure Appl. Math., 15, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1963, 1969, xi+329 pp., xv+470 pp. | MR | MR | MR | MR | Zbl | Zbl