Mots-clés : confocal quadrics
@article{SM_2024_215_9_a1,
author = {G. V. Belozerov and A. T. Fomenko},
title = {Generalized {Jacobi{\textendash}Chasles} theorem in {non-Euclidean} spaces},
journal = {Sbornik. Mathematics},
pages = {1159--1181},
year = {2024},
volume = {215},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a1/}
}
G. V. Belozerov; A. T. Fomenko. Generalized Jacobi–Chasles theorem in non-Euclidean spaces. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1159-1181. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a1/
[1] C. G. J. Jacobi, “Note von der geodätischen Linie auf einem Ellipsoid und den verschiedenen Anwendungen einer merkwürdigen analytischen Substitution”, J. Reine Angew. Math., 1839:19 (1839), 309–313 | DOI | MR | Zbl
[2] C. G. J. Jacobi, Vorlesungen über Dynamik, Gesammelte Werke, Supplementband, 2. rev. Ausg., G. Reimer, Berlin, 1884, viii+300 pp. | MR | Zbl
[3] M. Chasles, “Sur les lignes géodésiques et les lignes de courbure des surfaces du second degré”, J. Math. Pures Appl., 11 (1846), 5–20
[4] V. I. Arnold, Mathematical methods of classical mechanics, 3rd ed., Nauka, Moscow, 1989, 472 pp. ; English transl. of 1st ed., Grad. Texts in Math., 60, Springer-Verlag, New York–Heidelberg, 1978, x+462 pp. | MR | Zbl | DOI | MR | Zbl
[5] G. V. Belozerov, “Integrability of a geodesic flow on the intersection of several confocal quadric”, Dokl. Math., 107:1 (2023), 1–3 | DOI | MR | Zbl
[6] G. V. Belozerov, “Geodesic flow on an intersection of several confocal quadrics in $\mathbb{R}^n$”, Sb. Math., 214:7 (2023), 897–918 | DOI | MR | Zbl
[7] B. Khesin and S. Tabachnikov, “Pseudo-Riemannian geodesics and billiards”, Adv. Math., 221:4 (2009), 1364–1396 | DOI | MR | Zbl
[8] V. Dragović and M. Radnović, “Topological invariants for elliptical billiards and geodesics on ellipsoids in the Minkowski space”, J. Math. Sci. (N.Y.), 223:6 (2017), 686–694 | DOI | MR | Zbl
[9] E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci. (N.Y.), 259:5 (2021), 656–675 | DOI | MR | Zbl
[10] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28 | DOI | MR | Zbl
[11] V. Dragović and M. Radnović, “Bicentennial of the Great Poncelet Theorem (1813–2013): current advances”, Bull. Amer. Math. Soc. (N.S.), 51:3 (2014), 373–445 | DOI | MR | Zbl
[12] V. V. Kozlov and D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | MR | Zbl | Zbl
[13] S. V. Bolotin, “Integrable billiards on surfaces of constant curvature”, Math. Notes, 51:2 (1992), 117–123 | DOI | MR | Zbl
[14] P. M. Morse and H. Feshbach, Methods of theoretical physics, v. 1, 2, McGraw-Hill Book Co., Inc., New York–Toronto–London, 1953, xl+1978 pp. | MR | Zbl
[15] S. Kobayashi and K. Nomizu, Foundations of differential geometry, v. I, II, Intersci. Tracts Pure Appl. Math., 15, Interscience Publishers John Wiley Sons, Inc., New York–London–Sydney, 1963, 1969, xi+329 pp., xv+470 pp. | MR | MR | MR | MR | Zbl | Zbl