@article{SM_2024_215_9_a0,
author = {M. K. Barinova and O. A. Kolchurina and E. I. Yakovlev},
title = {On 3-diffeomorphisms with generalized {Plykin} attractors},
journal = {Sbornik. Mathematics},
pages = {1135--1158},
year = {2024},
volume = {215},
number = {9},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/}
}
M. K. Barinova; O. A. Kolchurina; E. I. Yakovlev. On 3-diffeomorphisms with generalized Plykin attractors. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1135-1158. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/
[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl
[2] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Corr. reprint of the 1976 original, Springer-Verlag, New York–Heidelberg, 2012, x+221 pp. | DOI | MR | Zbl
[3] R. V. Plykin, “Sources and sinks of $A$-diffeomorphisms of surfaces”, Math. USSR-Sb., 23:2 (1974), 233–253 | DOI | MR | Zbl
[4] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl
[5] E. V. Zhuzhoma and V. S. Medvedev, “On non-orientable two-dimensional basic sets on 3-manifolds”, Sb. Math., 193:6 (2002), 869–888 | DOI | MR | Zbl
[6] M. Barinova, O. Pochinka and E. Yakovlev, “On a structure of non-wandering set of an $\Omega$-stable 3-diffeomorphism possessing a hyperbolic attractor”, Discrete Contin. Dyn. Syst., 44:1 (2024), 1–17 | DOI | MR | Zbl
[7] M. Barinova, “On isolated periodic points of diffeomorphisms with expanding attractors of codimension 1”, Regul. Chaotic Dyn., 29:5 (2024), 777–802 ; arXiv: 2404.156992 | DOI | MR
[8] V. Z. Grines and O. V. Pochinka, “The constructing of energy functions for $\Omega$-stable diffeomorphisms on 2- and 3-manifolds”, J. Math. Sci. (N.Y.), 250:4 (2020), 537–568 | DOI | MR | Zbl
[9] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl
[10] V. Z. Grines, F. Laudenbach and O. V. Pochinka, “Dynamically ordered energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Proc. Steklov Inst. Math., 278 (2012), 27–40 | DOI | MR | Zbl
[11] V. Z. Grines, M. K. Noskova and O. V. Pochinka, “The construction of an energy function for three-dimensional cascades with a two-dimensional expanding attractor”, Trans. Moscow Math. Soc., 76:2 (2015), 237–249 | DOI | MR | Zbl
[12] V. Z. Grines, M. K. Noskova and O. V. Pochinka, “Energy function for A-diffeomorphisms of surfaces with one-dimensional nontrivial basic sets”, Dinamicheskie Sistemy, 5(33):1–2 (2015), 31–37 (Russian) | Zbl
[13] M. Barinova, V. Grines, O. Pochinka and B. Yu, “Existence of an energy function for three-dimensional chaotic “sink-source” cascades”, Chaos, 31:6 (2021), 063112, 8 pp. | DOI | MR | Zbl
[14] M. K. Barinova, “On existence of an energy function for $\Omega$-stable surface diffeomorphisms”, Lobachevskii J. Math., 42:14 (2021), 3317–3323 | DOI | MR | Zbl
[15] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | DOI | MR | Zbl
[16] V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. | DOI | MR | Zbl
[17] R. V. Plykin, “The topology of basis sets for Smale diffeomorphisms”, Math. USSR-Sb., 13:2 (1971), 297–307 | DOI | MR | Zbl
[18] M. Barinova, V. Grines and O. Pochinka, “Dynamics of three-dimensional $A$-diffeomorphisms with two-dimensional attractors and repellers”, J. Difference Equ. Appl., 29:9–12 (2023), 1275–1286 | DOI | MR | Zbl
[19] M.-E. Hamstrom, “Homotopy properties of the space of homeomorphisms on $P^2$ and the Klein bottle”, Trans. Amer. Math. Soc., 120:1 (1965), 37–45 | DOI | MR | Zbl
[20] M. K. Barinova and E. K. Shustova, “Dynamical properties of direct products if discrete dynamical systems”, Zh. Srednevolzhsk. Mat. Obshch., 24:1 (2022), 21–30 (Russian) | DOI | Zbl