On 3-diffeomorphisms with generalized Plykin attractors
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1135-1158 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is known that a nontrivial attractor coexists with trivial basic sets in the nonwandering set of an $\Omega$-stable 3-diffeomorphism if and only if it is either nonorientable one-dimensional or (orientable or not) expanding and two-dimensional. Examples of such diffeomorphisms were constructed previously, with the exception of the case of a nonorientable two-dimensional attractor. The paper fills this gap. In addition, it is constructively shown that the diffeomorphism obtained has an energy function, which extends thereby the class of cascades with global Lyapunov function whose set of critical points coincides with the nonwandering set of the dynamical system. Bibliography: 20 titles.
Keywords: basic set, $\Omega$-stability, expanding attractor, generalized Plykin attractor, energy function.
@article{SM_2024_215_9_a0,
     author = {M. K. Barinova and O. A. Kolchurina and E. I. Yakovlev},
     title = {On 3-diffeomorphisms with generalized {Plykin} attractors},
     journal = {Sbornik. Mathematics},
     pages = {1135--1158},
     year = {2024},
     volume = {215},
     number = {9},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/}
}
TY  - JOUR
AU  - M. K. Barinova
AU  - O. A. Kolchurina
AU  - E. I. Yakovlev
TI  - On 3-diffeomorphisms with generalized Plykin attractors
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1135
EP  - 1158
VL  - 215
IS  - 9
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/
LA  - en
ID  - SM_2024_215_9_a0
ER  - 
%0 Journal Article
%A M. K. Barinova
%A O. A. Kolchurina
%A E. I. Yakovlev
%T On 3-diffeomorphisms with generalized Plykin attractors
%J Sbornik. Mathematics
%D 2024
%P 1135-1158
%V 215
%N 9
%U http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/
%G en
%F SM_2024_215_9_a0
M. K. Barinova; O. A. Kolchurina; E. I. Yakovlev. On 3-diffeomorphisms with generalized Plykin attractors. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1135-1158. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/

[1] S. Smale, “Differentiable dynamical systems”, Bull. Amer. Math. Soc., 73:6 (1967), 747–817 | DOI | MR | Zbl

[2] M. W. Hirsch, Differential topology, Grad. Texts in Math., 33, Corr. reprint of the 1976 original, Springer-Verlag, New York–Heidelberg, 2012, x+221 pp. | DOI | MR | Zbl

[3] R. V. Plykin, “Sources and sinks of $A$-diffeomorphisms of surfaces”, Math. USSR-Sb., 23:2 (1974), 233–253 | DOI | MR | Zbl

[4] A. Katok and B. Hasselblatt, Introduction to the modern theory of dynamical systems, Encyclopedia Math. Appl., 54, Cambridge Univ. Press, Cambridge, 1995, xviii+802 pp. | DOI | MR | Zbl

[5] E. V. Zhuzhoma and V. S. Medvedev, “On non-orientable two-dimensional basic sets on 3-manifolds”, Sb. Math., 193:6 (2002), 869–888 | DOI | MR | Zbl

[6] M. Barinova, O. Pochinka and E. Yakovlev, “On a structure of non-wandering set of an $\Omega$-stable 3-diffeomorphism possessing a hyperbolic attractor”, Discrete Contin. Dyn. Syst., 44:1 (2024), 1–17 | DOI | MR | Zbl

[7] M. Barinova, “On isolated periodic points of diffeomorphisms with expanding attractors of codimension 1”, Regul. Chaotic Dyn., 29:5 (2024), 777–802 ; arXiv: 2404.156992 | DOI | MR

[8] V. Z. Grines and O. V. Pochinka, “The constructing of energy functions for $\Omega$-stable diffeomorphisms on 2- and 3-manifolds”, J. Math. Sci. (N.Y.), 250:4 (2020), 537–568 | DOI | MR | Zbl

[9] D. Pixton, “Wild unstable manifolds”, Topology, 16:2 (1977), 167–172 | DOI | MR | Zbl

[10] V. Z. Grines, F. Laudenbach and O. V. Pochinka, “Dynamically ordered energy function for Morse–Smale diffeomorphisms on 3-manifolds”, Proc. Steklov Inst. Math., 278 (2012), 27–40 | DOI | MR | Zbl

[11] V. Z. Grines, M. K. Noskova and O. V. Pochinka, “The construction of an energy function for three-dimensional cascades with a two-dimensional expanding attractor”, Trans. Moscow Math. Soc., 76:2 (2015), 237–249 | DOI | MR | Zbl

[12] V. Z. Grines, M. K. Noskova and O. V. Pochinka, “Energy function for A-diffeomorphisms of surfaces with one-dimensional nontrivial basic sets”, Dinamicheskie Sistemy, 5(33):1–2 (2015), 31–37 (Russian) | Zbl

[13] M. Barinova, V. Grines, O. Pochinka and B. Yu, “Existence of an energy function for three-dimensional chaotic “sink-source” cascades”, Chaos, 31:6 (2021), 063112, 8 pp. | DOI | MR | Zbl

[14] M. K. Barinova, “On existence of an energy function for $\Omega$-stable surface diffeomorphisms”, Lobachevskii J. Math., 42:14 (2021), 3317–3323 | DOI | MR | Zbl

[15] C. Robinson, Dynamical systems. Stability, symbolic dynamics, and chaos, Stud. Adv. Math., 2nd ed., CRC Press, Boca Raton, FL, 1999, xiv+506 pp. | DOI | MR | Zbl

[16] V. Z. Grines, T. V. Medvedev and O. V. Pochinka, Dynamical systems on 2- and 3-manifolds, Dev. Math., 46, Springer, Cham, 2016, xxvi+295 pp. | DOI | MR | Zbl

[17] R. V. Plykin, “The topology of basis sets for Smale diffeomorphisms”, Math. USSR-Sb., 13:2 (1971), 297–307 | DOI | MR | Zbl

[18] M. Barinova, V. Grines and O. Pochinka, “Dynamics of three-dimensional $A$-diffeomorphisms with two-dimensional attractors and repellers”, J. Difference Equ. Appl., 29:9–12 (2023), 1275–1286 | DOI | MR | Zbl

[19] M.-E. Hamstrom, “Homotopy properties of the space of homeomorphisms on $P^2$ and the Klein bottle”, Trans. Amer. Math. Soc., 120:1 (1965), 37–45 | DOI | MR | Zbl

[20] M. K. Barinova and E. K. Shustova, “Dynamical properties of direct products if discrete dynamical systems”, Zh. Srednevolzhsk. Mat. Obshch., 24:1 (2022), 21–30 (Russian) | DOI | Zbl