On 3-diffeomorphisms with generalized Plykin attractors
Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1135-1158
Voir la notice de l'article provenant de la source Math-Net.Ru
It is known that a nontrivial attractor coexists with trivial basic sets in the nonwandering set of an $\Omega$-stable 3-diffeomorphism if and only if it is either nonorientable one-dimensional or (orientable or not) expanding and two-dimensional. Examples of such diffeomorphisms were constructed previously, with the exception of the case of a nonorientable two-dimensional attractor. The paper fills this gap. In addition, it is constructively shown that the diffeomorphism obtained has an energy function, which extends thereby the class of cascades with global Lyapunov function whose set of critical points coincides with the nonwandering set of the dynamical system.
Bibliography: 20 titles.
Keywords:
basic set, $\Omega$-stability, expanding attractor, generalized Plykin attractor, energy function.
@article{SM_2024_215_9_a0, author = {M. K. Barinova and O. A. Kolchurina and E. I. Yakovlev}, title = {On 3-diffeomorphisms with generalized {Plykin} attractors}, journal = {Sbornik. Mathematics}, pages = {1135--1158}, publisher = {mathdoc}, volume = {215}, number = {9}, year = {2024}, language = {en}, url = {http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/} }
TY - JOUR AU - M. K. Barinova AU - O. A. Kolchurina AU - E. I. Yakovlev TI - On 3-diffeomorphisms with generalized Plykin attractors JO - Sbornik. Mathematics PY - 2024 SP - 1135 EP - 1158 VL - 215 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/ LA - en ID - SM_2024_215_9_a0 ER -
M. K. Barinova; O. A. Kolchurina; E. I. Yakovlev. On 3-diffeomorphisms with generalized Plykin attractors. Sbornik. Mathematics, Tome 215 (2024) no. 9, pp. 1135-1158. http://geodesic.mathdoc.fr/item/SM_2024_215_9_a0/