On Grothendieck-type duality for spaces of holomorphic functions of several variables
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1114-1133 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We describe the strong dual space $({\mathcal O} (D))^*$ of the space ${\mathcal O} (D)$ of holomorphic functions of several complex variables in a bounded domain $D$ with Lipschitz boundary and connected complement (as usual, ${\mathcal O} (D)$ is endowed with the topology of local uniform convergence in $D$). We identify the dual space with the closed subspace of the space of harmonic functions on the closed set ${\mathbb C}^n\setminus D$, $n>1$, whose elements vanish at the point at infinity and satisfy the Cauchy–Riemann tangential conditions on $\partial D$. In particular, we generalize classical Grothendieck–Köthe–Sebastião e Silva duality for holomorphic functions of one variable to the multivariate situation. We prove that the duality we produce holds if and only if the space ${\mathcal O} (D)\cap H^1 (D)$ of Sobolev-class holomorphic functions in $D$ is dense in ${\mathcal O} (D)$. Bibliography: 35 titles.
Keywords: duality, spaces of holomorphic functions of several variables.
@article{SM_2024_215_8_a5,
     author = {Yu. A. Khoryakova and A. A. Shlapunov},
     title = {On {Grothendieck-type} duality for spaces of holomorphic functions of several variables},
     journal = {Sbornik. Mathematics},
     pages = {1114--1133},
     year = {2024},
     volume = {215},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a5/}
}
TY  - JOUR
AU  - Yu. A. Khoryakova
AU  - A. A. Shlapunov
TI  - On Grothendieck-type duality for spaces of holomorphic functions of several variables
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1114
EP  - 1133
VL  - 215
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_8_a5/
LA  - en
ID  - SM_2024_215_8_a5
ER  - 
%0 Journal Article
%A Yu. A. Khoryakova
%A A. A. Shlapunov
%T On Grothendieck-type duality for spaces of holomorphic functions of several variables
%J Sbornik. Mathematics
%D 2024
%P 1114-1133
%V 215
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2024_215_8_a5/
%G en
%F SM_2024_215_8_a5
Yu. A. Khoryakova; A. A. Shlapunov. On Grothendieck-type duality for spaces of holomorphic functions of several variables. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1114-1133. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a5/

[1] A. Grothendieck, “Sur certain espaces de fonctions holomorphes. I”, J. Reine Angew. Math., 1953:192 (1953), 35–64 | DOI | MR | Zbl

[2] G. Köthe, “Dualität in der Funktionentheorie”, J. Reine Angew. Math., 1953:191 (1953), 30–39 | DOI | MR | Zbl

[3] J. Sebastião e Silva, “Analytic functions and functional analysis”, Portugal. Math., 9:1–2 (1950), 1–130 (Portuguese) | MR | Zbl

[4] L. A. Ajzenberg (Aizenberg), “The general form of a linear continuous functional in spaces of functions that are holomorphic in convex domains of ${C}^{n}$”, Soviet Math. Dokl., 7 (1966), 198–202 | MR | Zbl

[5] A. Martineau, “Sur la topologie des espaces de fonctions holomorphes”, Math. Ann., 163 (1966), 62–88 | DOI | MR | Zbl

[6] L. A. Aizenberg and S. G. Gindikin, “On the general form of a continuous linear functional on spaces of holomorphic functions”, Uchen. Zap. Mosk. Obl. Ped. Inst., 137 (1964), 7–15 (Russian) | MR

[7] L. A. Aizenberg and B. S. Mityagin, “Spaces of functions analytic in multi-circular domains”, Sibirsk. Mat. Zh., 1:2 (1960), 153–170 (Russian) | MR | Zbl

[8] E. L. Stout, “Harmonic duality, hyperfunctions and removable singularities”, Izv. Math., 59:6 (1995), 1233–1272 | DOI | MR | Zbl

[9] M. Nacinovich, A. Shlapunov and N. Tarkhanov, “Duality in the spaces of solutions of elliptic systems”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 26:2 (1998), 207–232 | MR | Zbl

[10] P. Zorn, “Analytic functionals and Bergman spaces”, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4), 9:3 (1982), 365–404 | MR | Zbl

[11] J. P. Serre, “Une théorème de dualité”, Comment. Math. Helv., 29 (1955), 9–26 | DOI | MR | Zbl

[12] A. Martineau, “Sur les fonctionelles analytiques et la transformation de Fourier–Borel”, J. Anal. Math., 9 (1963), 1–164 | DOI | MR | Zbl

[13] L. A. Aizenberg, “Duality in complex analysis”, Proceedings of the Ashkelon workshop on complex function theory (Ashkelon 1996), Israel Math. Conf. Proc., 11, Bar-Ilan Univ., Gelbart Res. Inst. Math. Sci., Ramat Gan, 1997, 27–35 | MR | Zbl

[14] P. Blanchet, “A duality theorem for solutions of elliptic equations”, Int. J. Math. Math. Sci., 13:1 (1990), 73–85 | DOI | MR | Zbl

[15] A. Grothendieck, “Sur les espaces de solutions d'une classe générale d'équations aux dérivées partielles”, J. Anal. Math., 2 (1953), 243–280 | DOI | MR | Zbl

[16] M. Nakai and L. Sario, “Harmonic functionals on open Riemann surfaces”, Pacific J. Math., 93:1 (1981), 147–161 | DOI | MR | Zbl

[17] V. V. Napalkov, “Various representations of the space of analytic functions and the problem of the dual space description”, Dokl. Math., 66:3 (2002), 335–337 | MR | Zbl

[18] A. A. Shlapunov, “On duality in spaces of solutions to elliptic systems”, Siberian Math. J., 43:4 (2002), 769–777 | DOI | MR | Zbl

[19] A. Shlapunov and N. Tarkhanov, “Duality by reproducing kernels”, Int. J. Math. Math. Sci., 2003:6 (2003), 327–395 | DOI | MR | Zbl

[20] G. M. Henkin and E. M. Chirka, “Boundary properties of holomorphic functions of several complex variables”, J. Soviet Math., 5:5 (1976), 612–687 | DOI | MR | Zbl

[21] R. C. Gunning and H. Rossi, Analytic functions of several complex variables, Prentice-Hall, Inc., Englewood Cliffs, NJ, 1965, xiv+317 pp. | MR | Zbl

[22] H. H. Schaefer and M. P. Wolff, Topological vector spaces, Grad. Texts in Math., 3, 2nd ed., Springer-Verlag, New York, 1999, xii+346 pp. | DOI | MR | Zbl

[23] D. Gilbarg and N. S. Trudinger, Elliptic partial differential equations of second order, Grundlehren Math. Wiss., 224, 2nd ed., Springer-Verlag, Berlin, 1983, xiii+513 pp. | DOI | MR | Zbl

[24] A. M. Kytmanov, The Bochner–Martinelli integral and its applications, Birkhäuser Verlag, Basel, 1995, xii+305 pp. | DOI | MR | Zbl

[25] S. Rempel and B.-W. Schulze, Index theory of elliptic boundary problems, Math. Lehrbucher und Monogr., 55, Akademie-Verlag, Berlin, 1982, 393 pp. | DOI | MR | Zbl

[26] M. Costabel, “Boundary integral operators on Lipschitz domains: elementary results”, SIAM J. Math. Anal., 19:3 (1988), 613–626 | DOI | MR | Zbl

[27] V. S. Vladimirov, Equations of mathematical physics, 5th ed., Nauka, Moscow, 1988, 512 pp. ; English transl. of 1st ed., Pure Appl. Math., 3, Marcel Dekker, Inc., New York, 1971, vi+418 pp. | MR | Zbl | MR | Zbl

[28] J. J. Kohn, “Subellipticity of the $\overline \partial$-Neumann problem on pseudo-convex domains: sufficient conditions”, Acta Math., 142:1–2 (1979), 79–122 | DOI | MR | Zbl

[29] S. L. Sobolev, Cubature formulas and modern analysis. An introduction, Gordon and Breach Sci. Publ., Montreux, 1992, xvi+379 pp. | MR | Zbl

[30] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl

[31] A. V. Romanov, “Convergence of iterates of the Bochner–Martinelli operator, and the Cauchy–Riemann equation”, Soviet Math. Dokl., 19:5 (1978), 1211–1215 | MR | Zbl

[32] M. Nacinovich and A. A. Shlapunov, “On iterations of the Green integrals and their applications to elliptic differential complexes”, Math. Nachr., 180 (1996), 243–284 | DOI | MR | Zbl

[33] A. A. Shlapunov and N. N. Tarkhanov, “On the Cauchy problem for holomorphic functions of the Lebesgue class $L^2$ in domains”, Siberian Math. J., 33:5 (1992), 914–922 | DOI | MR | Zbl

[34] M. Morimoto, An introduction to Sato's hyperfunctions, Transl. from the Japan., Transl. Math. Monogr., 129, Amer. Math. Soc., Providence, RI, 1993, xii+273 pp. | DOI | MR | Zbl

[35] C. B. Morrey, Jr., and L. Nirenberg, “On the analyticity of the solutions of linear elliptic systems of partial differential equations”, Comm. Pure Appl. Math., 10:2 (1957), 271–290 | DOI | MR | Zbl