On Grothendieck-type duality for spaces of holomorphic functions of several variables
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1114-1133
Voir la notice de l'article provenant de la source Math-Net.Ru
We describe the strong dual space $({\mathcal O} (D))^*$ of the space ${\mathcal O} (D)$ of holomorphic functions of several complex variables in a bounded domain $D$ with Lipschitz boundary and connected complement (as usual, ${\mathcal O} (D)$ is endowed with the topology of local uniform convergence in $D$). We identify the dual space with the closed subspace of the space of harmonic functions on the closed set ${\mathbb C}^n\setminus D$, $n>1$, whose elements vanish at the point at infinity and satisfy the Cauchy–Riemann tangential conditions on $\partial D$. In particular, we generalize classical Grothendieck–Köthe–Sebastião e Silva duality for holomorphic functions of one variable to the multivariate situation. We prove that the duality we produce holds if and only if the space ${\mathcal O} (D)\cap H^1 (D)$ of Sobolev-class holomorphic functions in $D$ is dense in ${\mathcal O} (D)$.
Bibliography: 35 titles.
Keywords:
duality, spaces of holomorphic functions of several variables.
@article{SM_2024_215_8_a5,
author = {Yu. A. Khoryakova and A. A. Shlapunov},
title = {On {Grothendieck-type} duality for spaces of holomorphic functions of several variables},
journal = {Sbornik. Mathematics},
pages = {1114--1133},
publisher = {mathdoc},
volume = {215},
number = {8},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a5/}
}
TY - JOUR AU - Yu. A. Khoryakova AU - A. A. Shlapunov TI - On Grothendieck-type duality for spaces of holomorphic functions of several variables JO - Sbornik. Mathematics PY - 2024 SP - 1114 EP - 1133 VL - 215 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2024_215_8_a5/ LA - en ID - SM_2024_215_8_a5 ER -
Yu. A. Khoryakova; A. A. Shlapunov. On Grothendieck-type duality for spaces of holomorphic functions of several variables. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1114-1133. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a5/