Mots-clés : nontangent maximal function, Carleson–Duren–Hörmander embedding theorem
@article{SM_2024_215_8_a4,
author = {V. G. Krotov},
title = {Marcinkiewicz's interpolation theorem for {Hardy-type} spaces and its applications},
journal = {Sbornik. Mathematics},
pages = {1091--1113},
year = {2024},
volume = {215},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a4/}
}
V. G. Krotov. Marcinkiewicz's interpolation theorem for Hardy-type spaces and its applications. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1091-1113. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a4/
[1] J. Marcinkiewicz, “Sur l'interpolation d'opérations”, C. R. Acad. Sci. Paris, 208 (1939), 1272–1273 | Zbl
[2] A. Zygmund, “On a theorem of Marcinkiewicz concerning interpolation of operations”, J. Math. Pures Appl. (9), 35 (1956), 223–248 | MR | Zbl
[3] A. Zygmund, Trigonometric series, v. II, 2nd ed., Cambridge Univ. Press, New York, 1959, vii+354 pp. | MR | Zbl
[4] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | Zbl
[5] S. G. Kreĭn, Ju. I. Petunin and E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl
[6] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | Zbl
[7] E. M. Stein and G. Weiss, “An extension of a theorem of Marcinkiewicz and some of its applications”, J. Math. Mech., 8:2 (1959), 263–284 | DOI | MR | Zbl
[8] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl
[9] L. Grafakos, Classical Fourier analysis, Grad. Texts in Math., 249, 2nd ed., Springer, New York, 2008, xvi+489 pp. | DOI | MR | Zbl
[10] G. G. Lorentz, “Some new functional spaces”, Ann. of Math. (2), 51:1 (1950), 37–55 | DOI | MR | Zbl
[11] Yi Yu Liang, Li Guang Liu and Da Chun Yang, “An off-diagonal Marcinkiewicz interpolation theorem on Lorentz spaces”, Acta Math. Sin. (Engl. Ser.), 27:8 (2011), 1477–1488 | DOI | MR | Zbl
[12] L. Grafakos, Classical Fourier analysis, Grad. Texts in Math., 249, 3rd ed., Springer, New York, 2014, xviii+638 pp. | DOI | MR | Zbl
[13] L. Grafakos and N. Kalton, “Some remarks on multilinear maps and interpolation”, Math. Ann., 319:1 (2001), 151–180 | DOI | MR | Zbl
[14] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl
[15] R. R. Coifman, Y. Meyer and E. M. Stein, “Some new function spaces and their applications in harmonic analysis”, J. Funct. Anal., 62:2 (1985), 304–335 | DOI | MR | Zbl
[16] V. G. Krotov, “On the boundary behavior of functions in spaces of Hardy type”, Math. USSR-Izv., 37:2 (1991), 303–320 | DOI | MR | Zbl
[17] V. G. Krotov, “Tent spaces and their applications”, Theory of functions and approximations: Saratov Winter School, v. 1, Publishing House of Saratov University, Saratov, 1992, 90–102 (Russian) | MR
[18] G. H. Hardy and J. E. Littlewood, “A maximal theorem with function-theoretic applications”, Acta Math., 54:1 (1930), 81–116 | DOI | MR | Zbl
[19] C. Fefferman and E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl
[20] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980, xiii+436 pp. | DOI | MR | Zbl
[21] G. Verchota, “The Dirichlet problem for the polyharmonic equation in Lipschitz domains”, Indiana Univ. Math. J., 39:3 (1990), 671–702 | DOI | MR | Zbl
[22] J. Pipher and G. C. Verchota, “Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators”, Ann. of Math. (2), 142:1 (1995), 1–38 | DOI | MR | Zbl
[23] V. G. Krotov, “Marcinkiewicz interpolation theorem for spaces of Hardy type”, Math. Notes, 113:2 (2023), 306–310 | DOI | MR | Zbl
[24] V. G. Krotov, “Interpolation of operators in Hardy-type spaces”, Proc. Steklov Inst. Math., 323 (2023), 173–187 | DOI | MR | Zbl
[25] R. A. Hunt, “On $L(p,q)$ spaces”, Enseign. Math. (2), 12 (1966), 249–276 | MR | Zbl
[26] T. Aoki, “Locally bounded linear topological spaces”, Proc. Imp. Acad. Tokyo, 18:10 (1942), 588–594 | DOI | MR | Zbl
[27] S. Rolewicz, Metric linear spaces, Math. Appl. (East European Ser.), 20, 2nd ed., D. Reidel Publishing Co., Dordrecht; PWN–Polish Sci. Publ., Warsaw, 1985, xii+459 pp. | MR | Zbl
[28] A. B. Aleksandrov, “Function theory in the ball”, Several complex variables. II. Function theory in classical domains. Complex potential theory, Encycl. Math. Sci., 8, 1994, 107–178 | MR | MR | Zbl
[29] A. P. Calderón, “Inequalities for the maximal function relative to a metric”, Studia Math., 57:3 (1976), 297–306 | DOI | MR | Zbl
[30] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl
[31] L. Carleson, “Interpolations by bounded analytic functions and the corona problem”, Ann. of Math. (2), 76:3 (1962), 547–559 | DOI | MR | Zbl
[32] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | Zbl
[33] L. Hörmander, “$L^p$ estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | DOI | MR | Zbl
[34] P. L. Duren, “Extension of a theorem of Carleson”, Bull. Amer. Math. Soc., 75:1 (1969), 143–146 | DOI | MR | Zbl
[35] L. Grafakos, Modern Fourier analysis, Grad. Texts in Math., 250, 3rd ed., Springer, New York, 2014, xvi+624 pp. | DOI | MR | Zbl
[36] S. C. Gadbois and W. T. Sledd, “Carleson measures on spaces of homogeneous type”, Trans. Amer. Math. Soc., 341:2 (1994), 841–862 | DOI | MR | Zbl
[37] G. H. Hardy and J. E. Littlewood, “A convergence criterion for Fourier series”, Math. Z., 28:1 (1928), 612–634 | DOI | MR | Zbl
[38] G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. II”, Math. Z., 34:1 (1932), 403–439 | DOI | MR | Zbl
[39] G. H. Hardy and J. E. Littlewood, “Theorems concerning mean values of analytic or harmonic functions”, Quart. J. Math. Oxford Ser., 12:1 (1941), 221–256 | DOI | MR | Zbl
[40] T. M. Flett, “On the rate of growth of mean values of holomorphic and harmonic functions”, Proc. London Math. Soc. (3), 20:4 (1970), 749–768 | DOI | MR | Zbl
[41] J. Mitchell and K. T. Hahn, “Representation of linear functionals in $H^p$ spaces over bounded symmetric domains in ${C}^N$”, J. Math. Anal. Appl., 56:2 (1976), 379–396 | DOI | MR | Zbl