Marcinkiewicz's interpolation theorem for Hardy-type spaces and its applications
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1091-1113 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A series of results similar to Marcinkiewicz's theorem on the interpolation of operators is put forward. The difference from the classical forms of this theorem is that spaces of integrable functions are replaced by some function classes that are extensions of various Hardy spaces. Some applications of these results to the extension of Carleson's embedding theorem and the Hardy–Littlewood inequalities for analytic functions in Hardy classes are presented. Bibliography: 41 titles.
Keywords: Marcinkiewicz's interpolation theorem, Lorentz space, Hardy-type space, Hardy–Littlewood inequality.
Mots-clés : nontangent maximal function, Carleson–Duren–Hörmander embedding theorem
@article{SM_2024_215_8_a4,
     author = {V. G. Krotov},
     title = {Marcinkiewicz's interpolation theorem for {Hardy-type} spaces and its applications},
     journal = {Sbornik. Mathematics},
     pages = {1091--1113},
     year = {2024},
     volume = {215},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a4/}
}
TY  - JOUR
AU  - V. G. Krotov
TI  - Marcinkiewicz's interpolation theorem for Hardy-type spaces and its applications
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1091
EP  - 1113
VL  - 215
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_8_a4/
LA  - en
ID  - SM_2024_215_8_a4
ER  - 
%0 Journal Article
%A V. G. Krotov
%T Marcinkiewicz's interpolation theorem for Hardy-type spaces and its applications
%J Sbornik. Mathematics
%D 2024
%P 1091-1113
%V 215
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2024_215_8_a4/
%G en
%F SM_2024_215_8_a4
V. G. Krotov. Marcinkiewicz's interpolation theorem for Hardy-type spaces and its applications. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1091-1113. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a4/

[1] J. Marcinkiewicz, “Sur l'interpolation d'opérations”, C. R. Acad. Sci. Paris, 208 (1939), 1272–1273 | Zbl

[2] A. Zygmund, “On a theorem of Marcinkiewicz concerning interpolation of operations”, J. Math. Pures Appl. (9), 35 (1956), 223–248 | MR | Zbl

[3] A. Zygmund, Trigonometric series, v. II, 2nd ed., Cambridge Univ. Press, New York, 1959, vii+354 pp. | MR | Zbl

[4] E. M. Stein, Singular integrals and differentiability properties of functions, Princeton Math. Ser., 30, Princeton Univ. Press, Princeton, NJ, 1970, xiv+290 pp. | MR | Zbl

[5] S. G. Kreĭn, Ju. I. Petunin and E. M. Semenov, Interpolation of linear operators, Transl. Math. Monogr., 54, Amer. Math. Soc., Providence, RI, 1982, xii+375 pp. | MR | MR | Zbl | Zbl

[6] J. Bergh and J. Löfström, Interpolation spaces. An introduction, Grundlehren Math. Wiss., 223, Springer-Verlag, Berlin–New York, 1976, x+207 pp. | DOI | MR | Zbl

[7] E. M. Stein and G. Weiss, “An extension of a theorem of Marcinkiewicz and some of its applications”, J. Math. Mech., 8:2 (1959), 263–284 | DOI | MR | Zbl

[8] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl

[9] L. Grafakos, Classical Fourier analysis, Grad. Texts in Math., 249, 2nd ed., Springer, New York, 2008, xvi+489 pp. | DOI | MR | Zbl

[10] G. G. Lorentz, “Some new functional spaces”, Ann. of Math. (2), 51:1 (1950), 37–55 | DOI | MR | Zbl

[11] Yi Yu Liang, Li Guang Liu and Da Chun Yang, “An off-diagonal Marcinkiewicz interpolation theorem on Lorentz spaces”, Acta Math. Sin. (Engl. Ser.), 27:8 (2011), 1477–1488 | DOI | MR | Zbl

[12] L. Grafakos, Classical Fourier analysis, Grad. Texts in Math., 249, 3rd ed., Springer, New York, 2014, xviii+638 pp. | DOI | MR | Zbl

[13] L. Grafakos and N. Kalton, “Some remarks on multilinear maps and interpolation”, Math. Ann., 319:1 (2001), 151–180 | DOI | MR | Zbl

[14] V. I. Bogachev, Measure theory, v. I, Springer-Verlag, Berlin, 2007, xviii+500 pp. | DOI | MR | Zbl

[15] R. R. Coifman, Y. Meyer and E. M. Stein, “Some new function spaces and their applications in harmonic analysis”, J. Funct. Anal., 62:2 (1985), 304–335 | DOI | MR | Zbl

[16] V. G. Krotov, “On the boundary behavior of functions in spaces of Hardy type”, Math. USSR-Izv., 37:2 (1991), 303–320 | DOI | MR | Zbl

[17] V. G. Krotov, “Tent spaces and their applications”, Theory of functions and approximations: Saratov Winter School, v. 1, Publishing House of Saratov University, Saratov, 1992, 90–102 (Russian) | MR

[18] G. H. Hardy and J. E. Littlewood, “A maximal theorem with function-theoretic applications”, Acta Math., 54:1 (1930), 81–116 | DOI | MR | Zbl

[19] C. Fefferman and E. M. Stein, “$H^p$ spaces of several variables”, Acta Math., 129:3–4 (1972), 137–193 | DOI | MR | Zbl

[20] W. Rudin, Function theory in the unit ball of $\mathbb C^n$, Grundlehren Math. Wiss., 241, Springer-Verlag, New York–Berlin, 1980, xiii+436 pp. | DOI | MR | Zbl

[21] G. Verchota, “The Dirichlet problem for the polyharmonic equation in Lipschitz domains”, Indiana Univ. Math. J., 39:3 (1990), 671–702 | DOI | MR | Zbl

[22] J. Pipher and G. C. Verchota, “Dilation invariant estimates and the boundary Gårding inequality for higher order elliptic operators”, Ann. of Math. (2), 142:1 (1995), 1–38 | DOI | MR | Zbl

[23] V. G. Krotov, “Marcinkiewicz interpolation theorem for spaces of Hardy type”, Math. Notes, 113:2 (2023), 306–310 | DOI | MR | Zbl

[24] V. G. Krotov, “Interpolation of operators in Hardy-type spaces”, Proc. Steklov Inst. Math., 323 (2023), 173–187 | DOI | MR | Zbl

[25] R. A. Hunt, “On $L(p,q)$ spaces”, Enseign. Math. (2), 12 (1966), 249–276 | MR | Zbl

[26] T. Aoki, “Locally bounded linear topological spaces”, Proc. Imp. Acad. Tokyo, 18:10 (1942), 588–594 | DOI | MR | Zbl

[27] S. Rolewicz, Metric linear spaces, Math. Appl. (East European Ser.), 20, 2nd ed., D. Reidel Publishing Co., Dordrecht; PWN–Polish Sci. Publ., Warsaw, 1985, xii+459 pp. | MR | Zbl

[28] A. B. Aleksandrov, “Function theory in the ball”, Several complex variables. II. Function theory in classical domains. Complex potential theory, Encycl. Math. Sci., 8, 1994, 107–178 | MR | MR | Zbl

[29] A. P. Calderón, “Inequalities for the maximal function relative to a metric”, Studia Math., 57:3 (1976), 297–306 | DOI | MR | Zbl

[30] L. Carleson, “An interpolation problem for bounded analytic functions”, Amer. J. Math., 80:4 (1958), 921–930 | DOI | MR | Zbl

[31] L. Carleson, “Interpolations by bounded analytic functions and the corona problem”, Ann. of Math. (2), 76:3 (1962), 547–559 | DOI | MR | Zbl

[32] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | Zbl

[33] L. Hörmander, “$L^p$ estimates for (pluri-) subharmonic functions”, Math. Scand., 20 (1967), 65–78 | DOI | MR | Zbl

[34] P. L. Duren, “Extension of a theorem of Carleson”, Bull. Amer. Math. Soc., 75:1 (1969), 143–146 | DOI | MR | Zbl

[35] L. Grafakos, Modern Fourier analysis, Grad. Texts in Math., 250, 3rd ed., Springer, New York, 2014, xvi+624 pp. | DOI | MR | Zbl

[36] S. C. Gadbois and W. T. Sledd, “Carleson measures on spaces of homogeneous type”, Trans. Amer. Math. Soc., 341:2 (1994), 841–862 | DOI | MR | Zbl

[37] G. H. Hardy and J. E. Littlewood, “A convergence criterion for Fourier series”, Math. Z., 28:1 (1928), 612–634 | DOI | MR | Zbl

[38] G. H. Hardy and J. E. Littlewood, “Some properties of fractional integrals. II”, Math. Z., 34:1 (1932), 403–439 | DOI | MR | Zbl

[39] G. H. Hardy and J. E. Littlewood, “Theorems concerning mean values of analytic or harmonic functions”, Quart. J. Math. Oxford Ser., 12:1 (1941), 221–256 | DOI | MR | Zbl

[40] T. M. Flett, “On the rate of growth of mean values of holomorphic and harmonic functions”, Proc. London Math. Soc. (3), 20:4 (1970), 749–768 | DOI | MR | Zbl

[41] J. Mitchell and K. T. Hahn, “Representation of linear functionals in $H^p$ spaces over bounded symmetric domains in ${C}^N$”, J. Math. Anal. Appl., 56:2 (1976), 379–396 | DOI | MR | Zbl