On the convergence sets of operator sequences on spaces of homogeneous type
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1065-1090

Voir la notice de l'article provenant de la source Math-Net.Ru

We consider sequences of operators $U_n\colon L^1(X)\to M(X)$, where $X$ is a space of homogeneous type. Under some conditions on the operators $U_n$ we give a complete characterization of convergence (divergence) sets of sequences of functions $U_n(f)$, where $f\in L^p(X)$, $1\le p\le \infty$. The results are applied to characterize the convergence sets of some specific operator sequences in classical analysis. Bibliography: 44 titles.
Keywords: operator sequences, spaces of homogeneous type
Mots-clés : convergence sets, divergence sets, quasi-distance.
@article{SM_2024_215_8_a3,
     author = {G. A. Karagulyan},
     title = {On the convergence sets of operator sequences on spaces of homogeneous type},
     journal = {Sbornik. Mathematics},
     pages = {1065--1090},
     publisher = {mathdoc},
     volume = {215},
     number = {8},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/}
}
TY  - JOUR
AU  - G. A. Karagulyan
TI  - On the convergence sets of operator sequences on spaces of homogeneous type
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1065
EP  - 1090
VL  - 215
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/
LA  - en
ID  - SM_2024_215_8_a3
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%T On the convergence sets of operator sequences on spaces of homogeneous type
%J Sbornik. Mathematics
%D 2024
%P 1065-1090
%V 215
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/
%G en
%F SM_2024_215_8_a3
G. A. Karagulyan. On the convergence sets of operator sequences on spaces of homogeneous type. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1065-1090. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/