On the convergence sets of operator sequences on spaces of homogeneous type
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1065-1090
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We consider sequences of operators $U_n\colon L^1(X)\to M(X)$, where $X$ is a space of homogeneous type. Under some conditions on the operators $U_n$ we give a complete characterization of convergence (divergence) sets of sequences of functions $U_n(f)$, where $f\in L^p(X)$, $1\le p\le \infty$. The results are applied to characterize the convergence sets of some specific operator sequences in classical analysis.
Bibliography: 44 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
operator sequences, spaces of homogeneous type
Mots-clés : convergence sets, divergence sets, quasi-distance.
                    
                  
                
                
                Mots-clés : convergence sets, divergence sets, quasi-distance.
@article{SM_2024_215_8_a3,
     author = {G. A. Karagulyan},
     title = {On the convergence sets of operator sequences on spaces of homogeneous type},
     journal = {Sbornik. Mathematics},
     pages = {1065--1090},
     publisher = {mathdoc},
     volume = {215},
     number = {8},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/}
}
                      
                      
                    G. A. Karagulyan. On the convergence sets of operator sequences on spaces of homogeneous type. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1065-1090. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/
