On the convergence sets of operator sequences on spaces of homogeneous type
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1065-1090 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We consider sequences of operators $U_n\colon L^1(X)\to M(X)$, where $X$ is a space of homogeneous type. Under some conditions on the operators $U_n$ we give a complete characterization of convergence (divergence) sets of sequences of functions $U_n(f)$, where $f\in L^p(X)$, $1\le p\le \infty$. The results are applied to characterize the convergence sets of some specific operator sequences in classical analysis. Bibliography: 44 titles.
Keywords: operator sequences, spaces of homogeneous type
Mots-clés : convergence sets, divergence sets, quasi-distance.
@article{SM_2024_215_8_a3,
     author = {G. A. Karagulyan},
     title = {On the convergence sets of operator sequences on spaces of homogeneous type},
     journal = {Sbornik. Mathematics},
     pages = {1065--1090},
     year = {2024},
     volume = {215},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/}
}
TY  - JOUR
AU  - G. A. Karagulyan
TI  - On the convergence sets of operator sequences on spaces of homogeneous type
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1065
EP  - 1090
VL  - 215
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/
LA  - en
ID  - SM_2024_215_8_a3
ER  - 
%0 Journal Article
%A G. A. Karagulyan
%T On the convergence sets of operator sequences on spaces of homogeneous type
%J Sbornik. Mathematics
%D 2024
%P 1065-1090
%V 215
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/
%G en
%F SM_2024_215_8_a3
G. A. Karagulyan. On the convergence sets of operator sequences on spaces of homogeneous type. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1065-1090. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a3/

[1] V. M. Bugadze, “Divergence of Fourier–Haar series of bounded functions on sets of measure zero”, Math. Notes, 51:5 (1992), 437–441 | DOI | MR | Zbl

[2] V. V. Buzdalin, “Unbounded divergence of Fourier series of continuous functions”, Math. Notes, 7:1 (1970), 5–12 | DOI | MR | Zbl

[3] V. V. Buzdalin, “Trigonometric Fourier series of continuous functions diverging on a given set”, Math. USSR-Sb., 24:1 (1974), 79–102 | DOI | MR | Zbl

[4] L. Carleson, “On convergence and growth of partial sums of Fourier series”, Acta Math., 116 (1966), 135–157 | DOI | MR | Zbl

[5] M. Christ, Lectures on singular integral operators, CBMS Reg. Conf. Ser. Math., 77, Amer. Math. Soc., Providence, RI, 1990, x+132 pp. | MR | Zbl

[6] R. R. Coifman and G. Weiss, Analyse harmonique non-commutative sur certains espaces homogènes. Étude de certaines intégrales singulières, Lecture Notes in Math., 242, Springer-Verlag, Berlin–New York, 1971, v+160 pp. | DOI | MR | Zbl

[7] E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Math. and Math. Phys., 56, Cambridge Univ. Press, Cambridge, 1966, xi+211 pp. | DOI | MR | Zbl

[8] A. M. D'yachkov, “A description of the sets of Lebesgue points and points of summability for a Fourier series”, Math. USSR-Sb., 74:1 (1993), 111–118 | DOI | MR | Zbl

[9] Th. Fowler and D. Preiss, “A simple proof of Zahorski's description of non-differentiability sets of Lipschitz functions”, Real Anal. Exchange, 34:1 (2009), 127–138 | MR | Zbl

[10] U. Goginava, “On the divergence of Walsh–Fejér means of bounded functions on sets of measure zero”, Acta Math. Hungar., 121:4 (2008), 359–369 | DOI | MR | Zbl

[11] B. Golubov, A. Efimov and V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | Zbl

[12] H. Hahn, “Über die Menge der Konvergenzpunkte einer Funktionenfolge”, Arch. der Math. und Phys. (3), 28 (1919), 34–45 | Zbl

[13] D. C. Harris, “Compact sets of divergence for continuous functions on a Vilenkin group”, Proc. Amer. Math. Soc., 98:3 (1986), 436–440 | DOI | MR | Zbl

[14] F. Hausdorff, Set theory, Transl. from the 3rd German ed., Chelsea Publishing Co., New York, 1957, 352 pp. | MR | Zbl

[15] R. A. Hunt, “On the convergence of Fourier series”, Orthogonal expansions and their continuous analogues (Edwardsville, IL 1967), Southern Illinois Univ. Press, Carbondale, IL, 1968, 235–255 | MR | Zbl

[16] J.-P. Kahane and Yi. Katznelson, “Sur les ensembles de divergence des séries trigonométriques”, Studia Math., 26 (1966), 305–306 | DOI | MR | Zbl

[17] M. G. Grigoryan, A. Kamont and A. A. Maranjyan, “Menshov-type theorem for divergence sets of sequences of localized operators”, J. Contemp. Math. Anal., 58:2 (2023), 81–92 | DOI | MR | Zbl

[18] G. A. Karagulyan, “Divergence of general operators on sets of measure zero”, Colloq. Math., 121:1 (2010), 113–119 | DOI | MR | Zbl

[19] G. A. Karagulyan, “Characterization of the sets of divergence for sequences of operators with the localization property”, Sb. Math., 202:1 (2011), 9–33 | DOI | MR | Zbl

[20] G. A. Karagulyan, “On complete characterization of divergence sets of Fourier–Haar series”, J. Contemp. Math. Anal., 45:6 (2010), 334–347 | DOI | MR | Zbl

[21] G. A. Karagulyan, “On exceptional sets of the Hilbert transform”, Real Anal. Exchange, 42:2 (2017), 311–327 | MR | Zbl

[22] G. A. Karagulyan and D. A. Karagulyan, “On characterization of extremal sets of differentiation of integrals in $\mathbb R^2$”, J. Contemp. Math. Anal., 49:6 (2014), 334–351 | DOI | MR | Zbl

[23] Yi. Katznelson, An introduction to harmonic analysis, Cambridge Math. Lib., 3rd ed., Cambridge Univ. Press, Cambridge, 2004, xviii+314 pp. | DOI | MR | Zbl

[24] Š. V. Heladze, “The divergence everywhere of Fourier–Walsh series”, Sakharth. SSR Mecn. Akad. Moambe, 77:2 (1975), 305–307 (Russian) | MR

[25] S. V. Kolesnikov, “On sets of nonexistence of radial limits of bounded analytic functions”, Russian Acad. Sci. Sb. Math., 81:2 (1995), 477–485 | DOI | MR | Zbl

[26] T. W. Körner, “Sets of divergence for Fourier series”, Bull. London Math. Soc., 3:2 (1971), 152–154 | DOI | MR | Zbl

[27] S. Yu. Lukashenko, “On the structure of sets of divergence of trigonometric series and series in the Walsh system”, Soviet Math. Dokl., 22 (1980), 112–114 | MR | Zbl

[28] S. Yu. Lukashenko, “On the structure of divergence sets of Fourier–Walsh series”, Anal. Math., 10:1 (1984), 23–41 (Russian) | DOI | MR | Zbl

[29] M. A. Lunina, “On the set of points of unbounded divergence of Haar series”, Moscow Univ. Math. Bull., 31:3–4 (1976), 57–63 | MR | Zbl

[30] R. A. Macías and C. Segovia, “Lipschitz functions on spaces of homogeneous type”, Adv. Math., 33:3 (1979), 257–270 | DOI | MR | Zbl

[31] M. Passenbrunner and A. Shadrin, “On almost everywhere convergence of orthogonal spline projections with arbitrary knots”, J. Approx. Theory, 180 (2014), 77–89 | DOI | MR | Zbl

[32] G. Piranian, “The set of nondifferentiability of a continuous function”, Amer. Math. Monthly, 73:4 (1966), 57–61 | DOI | MR | Zbl

[33] V. I. Prokhorenko, “Divergent Fourier series with respect to Haar's system”, Izv. Vyssh. Uchebn. Zaved., Mat., 1971, no. 1, 62–68 (Russian) | MR | Zbl

[34] A. Yu. Shadrin, “The $L_\infty$-norm of the $L_2$-spline projector is bounded independently of the knot sequence: a proof of de Boor's conjecture”, Acta Math., 187:1 (2001), 59–137 | DOI | MR | Zbl

[35] W. Sierpiński, “Sur l'ensemble des points de convergence d'une suite de fonctions continues”, Fund. Math., 2:1 (1921), 41–49 | DOI | Zbl

[36] L. Simon, Lectures on geometric measure theory, Proc. Centre Math. Anal. Austral. Nat. Univ., 3, Austral. Nat. Univ., Canberra, 1983, vii+272 pp. | MR | Zbl

[37] L. V. Taikov, “On the divergence of Fourier series with respect to a re-arranged trigonometrical system”, Uspekhi Mat. Nauk, 18:5(113) (1963), 191–198 (Russian) | MR | Zbl

[38] P. L. Ul'yanov, “On divergence of Fourier series”, Uspekhi Mat. Nauk, 12:3(75) (1957), 75–132 (Russian) | MR | Zbl

[39] P. L. Ul'yanov, “Kolmogorov and divergent Fourier series”, Russian Math. Surveys, 38:4 (1983), 57–100 | DOI | MR | Zbl

[40] W. R. Wade, “Recent developments in the theory of Walsh series”, Internat. J. Math. Math. Sci., 5:4 (1982), 625–673 | DOI | MR | Zbl

[41] Z. Zahorski, “Sur l'ensemble des points de non-dérivabilité d'une fonction continue”, Bull. Soc. Math. France, 74 (1946), 147–178 | DOI | MR | Zbl

[42] Z. Zahorski, “Sur les intégrales singuliéres”, C. R. Acad. Sci. Paris, 223 (1946), 399–401 | MR | Zbl

[43] K. Zeller, “Über Konvergenzmengen von Fourierreihen”, Arch. Math., 6 (1955), 335–340 | DOI | MR | Zbl

[44] A. Zygmund, Trigonometric series, v. I, II, 2nd ed., Cambridge Univ. Press, New York, 1959, xii+383 pp., vii+354 pp. | MR | Zbl