Quantization dimension of probability measures
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1043-1052

Voir la notice de l'article provenant de la source Math-Net.Ru

The quantization dimension of a probability measure defined on a metric compact space $X$ is known not to exceed the box dimension of its support. It is proved that on any metric compact space of box dimension $\dim_BX=a\leq\infty$, for arbitrary two numbers $b\in[0,a]$ and $c\in[b,a]$ there is a probability measure such that its lower quantization dimension is $b$ and its upper quantization dimension is $c$. Bibliography: 6 titles.
Keywords: space of probability measures, intermediate value theorem for the quantization dimension.
Mots-clés : box dimension, quantization dimension
@article{SM_2024_215_8_a1,
     author = {A. V. Ivanov},
     title = {Quantization dimension of probability measures},
     journal = {Sbornik. Mathematics},
     pages = {1043--1052},
     publisher = {mathdoc},
     volume = {215},
     number = {8},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a1/}
}
TY  - JOUR
AU  - A. V. Ivanov
TI  - Quantization dimension of probability measures
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1043
EP  - 1052
VL  - 215
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_8_a1/
LA  - en
ID  - SM_2024_215_8_a1
ER  - 
%0 Journal Article
%A A. V. Ivanov
%T Quantization dimension of probability measures
%J Sbornik. Mathematics
%D 2024
%P 1043-1052
%V 215
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_8_a1/
%G en
%F SM_2024_215_8_a1
A. V. Ivanov. Quantization dimension of probability measures. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1043-1052. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a1/