Mots-clés : box dimension, quantization dimension
@article{SM_2024_215_8_a1,
author = {A. V. Ivanov},
title = {Quantization dimension of probability measures},
journal = {Sbornik. Mathematics},
pages = {1043--1052},
year = {2024},
volume = {215},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a1/}
}
A. V. Ivanov. Quantization dimension of probability measures. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1043-1052. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a1/
[1] S. Graf and H. Luschgy, Foundations of quantization for probability distributions, Lecture Notes in Math., 1730, Springer-Verlag, Berlin, 2000, x+230 pp. | DOI | MR | Zbl
[2] A. V. Ivanov, “On the functor of probability measures and quantization dimensions”, Vestn. Tomsk. Gos. Univ., Mat. Mekh., 2020, no. 63, 15–26 (Russian) | DOI | MR | Zbl
[3] A. V. Ivanov, “On the range of the quantization dimension of probability measures on a metric compactum”, Siberian Math. J., 63:5 (2022), 903–908 | DOI | MR | Zbl
[4] A. V. Ivanov, “On the intermediate values of the box dimensions”, Siberian Math. J., 64:3 (2023), 593–597 | DOI | MR | Zbl
[5] V. V. Fedorchuk and V. V. Filippov, General topology. Basic constructions, Publishing House of Moscow State University, Moscow, 1988, 253 pp. (Russian) | Zbl
[6] Ya. B. Pesin, Dimension theory in dynamical systems: contemporary views and applications, Chicago Lectures in Math., Univ. Chicago Press, Chicago, 1997, xi+304 pp. | DOI | MR | Zbl