Multipoint Geronimus and Schur parameters of measures on a circle and on a line
Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1007-1042 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A theorem of Geronimus that a measure corresponding to a Carathéodory function with sufficiently small Schur parameters has a support coinciding with the whole unit circle is established in the multipoint version, when the points of interpolation of the continued fraction representing the Carathéodory function have a limit distribution (in Geronimus's classical theorem all points of interpolation are concentrated at the origin). The Geronimus and Schur parameters of measures with support on the real line are introduced. For measures with support on the real line and the corresponding Nevanlinna function it is shown that an analogue of Geronimus's theorem holds, as well as analogues of some other results on measures with support on the unit circle. Bibliography: 18 titles.
Keywords: continued fractions, orthogonal rational functions, Geronimus and Schur parameters, Carathéodory and Nevanlinna functions.
@article{SM_2024_215_8_a0,
     author = {V. I. Buslaev},
     title = {Multipoint {Geronimus} and {Schur} parameters of measures on a~circle and on a~line},
     journal = {Sbornik. Mathematics},
     pages = {1007--1042},
     year = {2024},
     volume = {215},
     number = {8},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a0/}
}
TY  - JOUR
AU  - V. I. Buslaev
TI  - Multipoint Geronimus and Schur parameters of measures on a circle and on a line
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 1007
EP  - 1042
VL  - 215
IS  - 8
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_8_a0/
LA  - en
ID  - SM_2024_215_8_a0
ER  - 
%0 Journal Article
%A V. I. Buslaev
%T Multipoint Geronimus and Schur parameters of measures on a circle and on a line
%J Sbornik. Mathematics
%D 2024
%P 1007-1042
%V 215
%N 8
%U http://geodesic.mathdoc.fr/item/SM_2024_215_8_a0/
%G en
%F SM_2024_215_8_a0
V. I. Buslaev. Multipoint Geronimus and Schur parameters of measures on a circle and on a line. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1007-1042. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a0/

[1] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR

[2] G. Herglotz, “Über Potenzreihen mit positivem, reellem Teil im Einheitskreis”, Leipz. Ber., 63 (1911), 501–511 | Zbl

[3] Ya. L. Geronimus, “On polynomials orthogonal on the circle, trigonometric moment problem and the allied Carathéodory and Schur functions.”, Mat. Sb., 15(57):1 (1944), 99–130 (Russian) | MR | Zbl

[4] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Orthogonal rational functions, Cambridge Monogr. Appl. Comput. Math., 5, Cambridge Univ. Press, Cambridge, 1999, xiv+407 pp. | DOI | MR | Zbl

[5] E. A. Rahmanov (Rakhmanov), “On the asymptotics of the ratio of orthogonal polynomials”, Math. USSR-Sb., 32:2 (1977), 199–213 | DOI | MR | Zbl

[6] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying Szegö's condition”, Sb. Math., 58:1 (1987), 149–167 | DOI | MR | Zbl

[7] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | Zbl

[8] S. Khrushchev, “Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in $L^2(\mathbb T)$”, J. Approx. Theory, 108:2 (2001), 161–248 | DOI | MR | Zbl

[9] L. Baratchart, S. Kupin, V. Lunot and M. Olivi, “Multipoint Schur algorithm and orthogonal rational functions, I: Convergence properties”, J. Anal. Math., 114 (2011), 207–253 | DOI | MR | Zbl

[10] Ya. L. Geronimus, “Polynomials orthogonal on a circle and their applications”, Amer. Math. Soc. Translation, 1954 (1954), 104, 79 pp. | MR | MR | Zbl

[11] V. I. Buslaev, “Solvability of the Nevanlinna–Pick interpolation problem”, Sb. Math., 214:8 (2023), 1066–1100 | DOI | MR | Zbl

[12] N. Aronszajn, “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl

[13] V. I. Buslaev, “Schur's criterion for formal power series”, Sb. Math., 210:11 (2019), 1563–1580 | DOI | MR | Zbl

[14] V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Sb. Math., 211:12 (2020), 1660–1703 | DOI | MR | Zbl

[15] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721 | DOI | MR | Zbl

[16] V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290 (2015), 238–255 | DOI | MR | Zbl

[17] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl

[18] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl