@article{SM_2024_215_8_a0,
author = {V. I. Buslaev},
title = {Multipoint {Geronimus} and {Schur} parameters of measures on a~circle and on a~line},
journal = {Sbornik. Mathematics},
pages = {1007--1042},
year = {2024},
volume = {215},
number = {8},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_8_a0/}
}
V. I. Buslaev. Multipoint Geronimus and Schur parameters of measures on a circle and on a line. Sbornik. Mathematics, Tome 215 (2024) no. 8, pp. 1007-1042. http://geodesic.mathdoc.fr/item/SM_2024_215_8_a0/
[1] J. Schur, “Über Potenzreihen, die im Innern des Einheitskreises beschränkt sind”, J. Reine Angew. Math., 1917:147 (1917), 205–232 ; 1918:148 (1918), 122–145 | DOI | MR | Zbl | DOI | MR
[2] G. Herglotz, “Über Potenzreihen mit positivem, reellem Teil im Einheitskreis”, Leipz. Ber., 63 (1911), 501–511 | Zbl
[3] Ya. L. Geronimus, “On polynomials orthogonal on the circle, trigonometric moment problem and the allied Carathéodory and Schur functions.”, Mat. Sb., 15(57):1 (1944), 99–130 (Russian) | MR | Zbl
[4] A. Bultheel, P. González-Vera, E. Hendriksen and O. Njåstad, Orthogonal rational functions, Cambridge Monogr. Appl. Comput. Math., 5, Cambridge Univ. Press, Cambridge, 1999, xiv+407 pp. | DOI | MR | Zbl
[5] E. A. Rahmanov (Rakhmanov), “On the asymptotics of the ratio of orthogonal polynomials”, Math. USSR-Sb., 32:2 (1977), 199–213 | DOI | MR | Zbl
[6] E. A. Rakhmanov, “On asymptotic properties of polynomials orthogonal on the circle with weights not satisfying Szegö's condition”, Sb. Math., 58:1 (1987), 149–167 | DOI | MR | Zbl
[7] J. B. Garnett, Bounded analytic functions, Pure Appl. Math., 96, Academic Press, Inc., New York–London, 1981, xvi+467 pp. | MR | Zbl
[8] S. Khrushchev, “Schur's algorithm, orthogonal polynomials, and convergence of Wall's continued fractions in $L^2(\mathbb T)$”, J. Approx. Theory, 108:2 (2001), 161–248 | DOI | MR | Zbl
[9] L. Baratchart, S. Kupin, V. Lunot and M. Olivi, “Multipoint Schur algorithm and orthogonal rational functions, I: Convergence properties”, J. Anal. Math., 114 (2011), 207–253 | DOI | MR | Zbl
[10] Ya. L. Geronimus, “Polynomials orthogonal on a circle and their applications”, Amer. Math. Soc. Translation, 1954 (1954), 104, 79 pp. | MR | MR | Zbl
[11] V. I. Buslaev, “Solvability of the Nevanlinna–Pick interpolation problem”, Sb. Math., 214:8 (2023), 1066–1100 | DOI | MR | Zbl
[12] N. Aronszajn, “Theory of reproducing kernels”, Trans. Amer. Math. Soc., 68:3 (1950), 337–404 | DOI | MR | Zbl
[13] V. I. Buslaev, “Schur's criterion for formal power series”, Sb. Math., 210:11 (2019), 1563–1580 | DOI | MR | Zbl
[14] V. I. Buslaev, “Necessary and sufficient conditions for extending a function to a Schur function”, Sb. Math., 211:12 (2020), 1660–1703 | DOI | MR | Zbl
[15] V. I. Buslaev, “An analogue of Polya's theorem for piecewise holomorphic functions”, Sb. Math., 206:12 (2015), 1707–1721 | DOI | MR | Zbl
[16] V. I. Buslaev, “Capacity of a compact set in a logarithmic potential field”, Proc. Steklov Inst. Math., 290 (2015), 238–255 | DOI | MR | Zbl
[17] G. Pólya, “Beitrag zur Verallgemeinerung des Verzerrungssatzes auf mehrfach zusammenhängende Gebiete. III”, Sitzungsber. Preuss. Akad. Wiss. Phys.-Math. Kl., 1929 (1929), 55–62 | Zbl
[18] E. B. Saff and V. Totik, Logarithmic potentials with external fields, Appendix B by T. Bloom, Grundlehren Math. Wiss., 316, Springer-Verlag, Berlin, 1997, xvi+505 pp. | DOI | MR | Zbl