Polynomial rigidity and the spectra of Sidon automorphisms
Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 993-1006 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Continuum many spectrally disjoint Sidon automorphisms with tensor square isomorphic to a planar translation are produced. Their spectra do not have the group property. To show that their spectra are singular the polynomial rigidity of operators is used, which is related to the concept of linear determinism in the sense of Kolmogorov. In the class of mixing Gaussian and Poisson suspensions over Sidon automorphisms new sets of spectral multiplicities are realized. Bibliography: 12 titles.
Keywords: Sidon automorphisms, spectrum and disjointness of transformations, tensor roots, tensor products, polynomial rigidity, polynomial mixing.
@article{SM_2024_215_7_a5,
     author = {V. V. Ryzhikov},
     title = {Polynomial rigidity and the spectra of {Sidon} automorphisms},
     journal = {Sbornik. Mathematics},
     pages = {993--1006},
     year = {2024},
     volume = {215},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_7_a5/}
}
TY  - JOUR
AU  - V. V. Ryzhikov
TI  - Polynomial rigidity and the spectra of Sidon automorphisms
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 993
EP  - 1006
VL  - 215
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_7_a5/
LA  - en
ID  - SM_2024_215_7_a5
ER  - 
%0 Journal Article
%A V. V. Ryzhikov
%T Polynomial rigidity and the spectra of Sidon automorphisms
%J Sbornik. Mathematics
%D 2024
%P 993-1006
%V 215
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2024_215_7_a5/
%G en
%F SM_2024_215_7_a5
V. V. Ryzhikov. Polynomial rigidity and the spectra of Sidon automorphisms. Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 993-1006. http://geodesic.mathdoc.fr/item/SM_2024_215_7_a5/

[1] A. N. Kolmogorov, “Interpolation and extrapolation of stationary stochastic sequences”, Izv. Akad. Nauk SSSR Ser. Mat., 5:1 (1941), 3–14 (Russian) | MR | Zbl

[2] H. Helson, Méthodes complexes et méthodes de Hilbert en analyse de Fourier, Faculté des Sciences d'Orsay, 1967, 90 pp.

[3] A. M. Olevskii, “Representation of functions by exponentials with positive frequencies”, Russian Math. Surveys, 59:1 (2004), 171–180 | DOI | MR | Zbl

[4] A. B. Katok and A. M. Stepin, “Approximations in ergodic theory”, Russian Math. Surveys, 22:5 (1967), 77–102 | DOI | MR | Zbl

[5] V. V. Ryzhikov, “Thouvenot's isomorphism problem for tensor powers of ergodic flows”, Math. Notes, 104:6 (2018), 900–904 | DOI | MR | Zbl

[6] V. V. Ryzhikov, “Measure-preserving rank one transformations”, Trans. Moscow Math. Soc., 81:2 (2020), 229–259 | DOI | MR | Zbl

[7] Yu. A. Neretin, Categories of symmetries and infinite-dimensional groups, London Math. Soc. Monogr. (N.S.), 16, The Clarendon Press, Oxford Univ. Press, New York, 1996, xiv+417 pp. | MR | Zbl

[8] V. V. Ryzhikov, “Spectra of self-similar ergodic actions”, Math. Notes, 113:2 (2023), 274–281 | DOI | MR | Zbl

[9] A. H. Dooley and S. J. Eigen, “A family of generalized Riesz products”, Canad. J. Math., 48:2 (1996), 302–315 | DOI | MR | Zbl

[10] J. Bourgain, “On the spectral type of Ornstein's class one transformation”, Israel J. Math., 84:1–2 (1993), 53–63 | DOI | MR | Zbl

[11] I. Klemes and K. Reinhold, “Rank one transformations with singular spectral type”, Israel J. Math., 98 (1997), 1–14 | DOI | MR | Zbl

[12] I. Loh and C. E. Silva, “Strict doubly ergodic infinite transformations”, Dyn. Syst., 32:4 (2017), 519–543 | DOI | MR | Zbl