Approximations of one singular integral on an interval by Fourier--Chebyshev rational integral operators
Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 953-992

Voir la notice de l'article provenant de la source Math-Net.Ru

We study approximations on the interval $[-1,1]$ of singular integrals of the form $$ \widehat{f}(x)=\int_{-1}^{1}\frac{f(t)}{t-x}\sqrt{1-t^2}\,dt, \qquad x \in [-1,1], $$ by two rational integral operators related to each other in a certain sense. The first is the Fourier–Chebyshev integral operator associated with the Chebyshev–Markov system of rational functions. The second operator is its image under the transformation by the singular integral under consideration. Approximative properties of the corresponding polynomial analogues of both operators are studied in the case where the density of the singular integral satisfies a Hölder condition of exponent $\alpha \in (0,1]$ on $[-1,1]$. Rational approximations on $[-1,1]$ of the singular integral with power-law singular density are investigated. In the two cases under consideration the approximating rational functions have arbitrary many fixed geometrically different poles or the parameters of the approximating rational functions are modifications of the ‘Newman’ parameters. Bibliography: 34 titles.
Keywords: singular integral on an interval, Fourier–Chebyshev rational integral operators, uniform estimate, Laplace method, strong asymptotics.
@article{SM_2024_215_7_a4,
     author = {P. G. Potseiko and E. A. Rovba},
     title = {Approximations of one singular integral on an interval by {Fourier--Chebyshev} rational integral operators},
     journal = {Sbornik. Mathematics},
     pages = {953--992},
     publisher = {mathdoc},
     volume = {215},
     number = {7},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_7_a4/}
}
TY  - JOUR
AU  - P. G. Potseiko
AU  - E. A. Rovba
TI  - Approximations of one singular integral on an interval by Fourier--Chebyshev rational integral operators
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 953
EP  - 992
VL  - 215
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_7_a4/
LA  - en
ID  - SM_2024_215_7_a4
ER  - 
%0 Journal Article
%A P. G. Potseiko
%A E. A. Rovba
%T Approximations of one singular integral on an interval by Fourier--Chebyshev rational integral operators
%J Sbornik. Mathematics
%D 2024
%P 953-992
%V 215
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_7_a4/
%G en
%F SM_2024_215_7_a4
P. G. Potseiko; E. A. Rovba. Approximations of one singular integral on an interval by Fourier--Chebyshev rational integral operators. Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 953-992. http://geodesic.mathdoc.fr/item/SM_2024_215_7_a4/