@article{SM_2024_215_7_a4,
author = {P. G. Potseiko and E. A. Rovba},
title = {Approximations of one singular integral on an interval by {Fourier{\textendash}Chebyshev} rational integral operators},
journal = {Sbornik. Mathematics},
pages = {953--992},
year = {2024},
volume = {215},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_7_a4/}
}
TY - JOUR AU - P. G. Potseiko AU - E. A. Rovba TI - Approximations of one singular integral on an interval by Fourier–Chebyshev rational integral operators JO - Sbornik. Mathematics PY - 2024 SP - 953 EP - 992 VL - 215 IS - 7 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_7_a4/ LA - en ID - SM_2024_215_7_a4 ER -
P. G. Potseiko; E. A. Rovba. Approximations of one singular integral on an interval by Fourier–Chebyshev rational integral operators. Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 953-992. http://geodesic.mathdoc.fr/item/SM_2024_215_7_a4/
[1] F. D. Gakhov, Boundary value problems, Pergamon Press, Oxford; Addison-Wesley Publishing Co., Inc., Reading, MA–London, 1966, xix+561 pp. | MR | Zbl
[2] N. I. Muskhelishvili, Singular integral equations, 3d revised and augmented ed., Nauka, Moscow, 1968, 511 pp. ; English transl. of 2nd ed., P. Noordhoff N. V., Groningen, 1953, vi+447 pp. | MR | Zbl | MR | Zbl
[3] F. Erdogan and G. D. Gupta, “On the numerical solution of singular integral equations”, Quart. Appl. Math., 29 (1972), 525–534 | DOI | MR | Zbl
[4] D. Elliott and D. F. Paget, “On the convergence of a quadrature rule for evaluating certain Cauchy principal value integrals”, Numer. Math., 23 (1975), 311–319 | DOI | MR | Zbl
[5] M. A. Sheshko, “Convergence of quadrature processes for a singular integral”, Soviet Math. (Iz. VUZ), 20:12 (1976), 86–94 | MR | Zbl
[6] A. V. Saakyan, “Quadrature formulae of Gauss's type for singular integrals”, Problems in mechanics of thin deformed bodies, GITUTIUN of the National Academy of Sciences of Armenia, Erevan, 2002, 259–265 (Russian)
[7] Sh. S. Khubezhty, “Quadrature formulas for singular integrals with a Cauchy kernel”, Vladikavkaz. Mat. Zh., 10:4 (2008), 61–75 (Russian) | MR | Zbl
[8] Sh. S. Khubezhty and A. O. Tsutsaev, “Quadrature formulae for singular integrals which have almost Gaussian accuracy order”, Izv. Vyssh. Uchebn. Zaved. Sev.-Kavkaz. Region Estestv. Nauki, 2015, no. 2, 53–57 (Russian)
[9] B. G. Gabdulkhaev, “Finite-dimensional approximations of singular integrals and direct methods of solution of singular integral and integrodifferential equations”, J. Soviet Math., 18:4 (1982), 593–627 | DOI | MR | Zbl
[10] V. N. Rusak, “Uniform rational approximation of singular integrals”, Izv. Akad. Nauk Belarusi Ser. Fiz.-Mat. Nauk, 1993, no. 2, 22–26 (Russian) | MR | Zbl
[11] A. N. Boksha, “Approximation of singular integrals by rational functions in uniform metric”, Vestn. Beloruss. Gos. Univ. Ser. 1, Fiz. Mat. Inform., 1997, no. 3, 68–71 (Russian) | MR | Zbl
[12] V. N. Rusak and A. Kh. Uasis, “Rational approximation of singular integral with differentiable density”, Izv. Belarus. Gos. Ped. Univ. Ser. 1 Fiz. Mat. Inform. Biol. Geograf., 59:1 (2009), 8–11 (Russian)
[13] V. P. Motornyi, “Approximation of certain classes of singular integrals by algebraic polynomials”, Ukrainian Math. J., 53:3 (2001), 377–394 | DOI | MR | Zbl
[14] S. Takenaka, “On the orthogonal functions and a new formula of interpolation”, Japan. J. Math., 2 (1925), 129–145 | DOI | Zbl
[15] F. Malmquist, “Sur la détermination d'une classe de fonctions analytiques par leurs dans un ensemble donné de points”, Comptes rendus du 6ème congrès des mathématiciens scandinaves (Kopenhagen 1925), Det Hoffenbergske Etablissement, Kopenhagen, 1926, 253–259 | Zbl
[16] M. M. Dzhrbashyan, “On the theory of Fourier series in rational functions”, Izv. Akad. Nauk Arm. SSR Ser. Fiz.-Mat. Estestv. Tekhn. Nauki, 9:7 (1956), 3–28 (Russian) | MR | Zbl
[17] M. M. Dzhrbashyan and A. A. Kitbalyan, “One generalization of Chebyshev polynomials”, Dokl. Akad. Nauk Arm. SSR, 38:5 (1964), 263–270 (Russian) | MR | Zbl
[18] E. A. Rovba, “One direct method in rational approximation”, Dokl. Akad. Nauk BSSR, 23:11 (1979), 968–971 (Russian) | MR | Zbl
[19] P. G. Patseika (Potseiko), Y. A. Rouba (E. A. Rovba) and K. A. Smatrytski, “On one rational integral operator of Fourier–Chebyshev type and approximation of Markov functions”, Zh. Beloruss. Gos. Univ. Mat. Inform., 2 (2020), 6–27 | DOI | MR
[20] P. G. Potseiko and E. A. Rovba, “Approximations on classes of Poisson integrals by Fourier–Chebyshev rational integral operators”, Siberian Math. J., 62:2 (2021), 292–312 | DOI | MR | Zbl
[21] P. G. Potseiko and Ye. A. Rovba, “Conjugate rational Fourier–Chebyshev operator and its approximation properties”, Russian Math. (Iz. VUZ), 66:3 (2022), 35–49 | DOI | MR | Zbl
[22] V. N. Rusak, Rational functions as approximation apparatus, Belarusian State University, Minsk, 1979, 174 pp. (Russian) | MR
[23] O. V. Besov, “Estimate of the approximation of periodic functions by Fourier series”, Math. Notes, 79:5 (2006), 726–728 | DOI | MR | Zbl
[24] O. V. Besov, Lectures on mathematical analysis, 4th revised and augmented ed., Fizmatlit, Moscow, 2020, 476 pp. (Russian)
[25] K. N. Lungu, “On best approximations by rational functions with a fixed number of poles”, Math. USSR-Sb., 15:2 (1971), 313–324 | DOI | MR | Zbl
[26] K. N. Lungu, “Best approximations by rational functions with a fixed number of poles”, Siberian Math. J., 25:2 (1984), 289–296 | DOI | MR | Zbl
[27] M. A. Evgrafov, Asymptotic estimates and entire functions, 3d revised and augmented ed., Nauka, Moscow, 1979, 320 pp. ; English transl. of 1st ed., Gordon and Breach, Inc., New York, 1961, x+181 pp. | MR | Zbl | MR | Zbl
[28] M. V. Fedoryuk, Asymptotics: integrals and series, Nauka, Moscow, 1987, 544 pp. (Russian) | MR | Zbl
[29] E. A. Rovba and E. G. Mikulich, “Constants in the approximation of $|x|$ using rational interpolation processes”, Dokl. Nats. Akad. Nauk Belarusi, 53:6 (2009), 11–15 (Russian) | MR | Zbl
[30] A. A. Gončar (Gonchar), “On the rapidity of rational approximation of continuous functions with characteristic singularities”, Math. USSR-Sb., 2:4 (1967), 561–568 | DOI | MR | Zbl
[31] D. J. Newman, “Rational approximation to $|x|$”, Michigan Math. J., 11:1 (1964), 11–14 | DOI | MR | Zbl
[32] P. G. Potseiko and Y. A. Rovba, “On estimates of uniform approximations by rational Fourier–Chebyshev integral operators for a certain choice of poles”, Math. Notes, 113:6 (2023), 815–830 | DOI | MR | Zbl
[33] H. R. Stahl, “Best uniform rational approximation of $x^\alpha$ on $[0,1]$”, Acta Math., 190:2 (2003), 241–306 | DOI | MR | Zbl
[34] A. P. Bulanov, “Asymptotics for least deviation of $|x|$ from rational functions”, Math. USSR-Sb., 5:2 (1968), 275–290 | DOI | MR | Zbl