Error estimates taking account of correctors in homogenization of elliptic operators
Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 932-952 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For divergence-form second-order elliptic operators with measurable $\varepsilon$-periodic coefficients in $\mathbb{R}^d$ resolvent approximations with error term of order $\varepsilon^2$ as $\varepsilon\to 0$ in the operator norm $\|\cdot\|_{H^1{\to}H^1}$ are constructed. The method of two-scale expansions in powers of $\varepsilon$ up to order two inclusive is used. The lack of smoothness in the data of the problem is overcome by use of Steklov smoothing or its iterates. First scalar differential operators with real matrix of coefficients which act on functions $u\colon \mathbb{R}^d\to \mathbb{R}$, and then matrix differential operators with complex-valued tensor of order four which act on functions $u\colon \mathbb{R}^d\to \mathbb{C}^n$ are considered. Bibliography: 20 titles.
Keywords: periodic differential operators, homogenization, correctors, resolvent approximations, operator error estimates.
@article{SM_2024_215_7_a3,
     author = {S. E. Pastukhova},
     title = {Error estimates taking account of correctors in homogenization of elliptic operators},
     journal = {Sbornik. Mathematics},
     pages = {932--952},
     year = {2024},
     volume = {215},
     number = {7},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_7_a3/}
}
TY  - JOUR
AU  - S. E. Pastukhova
TI  - Error estimates taking account of correctors in homogenization of elliptic operators
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 932
EP  - 952
VL  - 215
IS  - 7
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_7_a3/
LA  - en
ID  - SM_2024_215_7_a3
ER  - 
%0 Journal Article
%A S. E. Pastukhova
%T Error estimates taking account of correctors in homogenization of elliptic operators
%J Sbornik. Mathematics
%D 2024
%P 932-952
%V 215
%N 7
%U http://geodesic.mathdoc.fr/item/SM_2024_215_7_a3/
%G en
%F SM_2024_215_7_a3
S. E. Pastukhova. Error estimates taking account of correctors in homogenization of elliptic operators. Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 932-952. http://geodesic.mathdoc.fr/item/SM_2024_215_7_a3/

[1] N. S. Bakhvalov, “Averaging of partial differential equations with rapidly oscillating coefficients”, Soviet Math. Dokl., 16:2 (1975), 351–355 | MR | Zbl

[2] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl

[3] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik and Kha T'en Ngoan, “Averaging and $G$-convergence of differential operators”, Russian Math. Surveys, 34:5 (1979), 69–147 | DOI | MR | Zbl

[4] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | Zbl

[5] V. V. Jikov (Zhikov), S. M. Kozlov and O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | MR | Zbl | Zbl

[6] M. Sh. Birman and T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl

[7] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl

[8] V. V. Zhikov and S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl

[9] S. E. Pastukhova, “Approximations of resolvents of second order elliptic operators with periodic coefficients”, J. Math. Sci. (N.Y.), 267:3 (2022), 382–397 | DOI | MR | Zbl

[10] E. S. Vasilevskaya and T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in $L_2(\mathbb{R}^d)$ with the first and second correctors taken into account”, St. Petersburg Math. J., 24:2 (2013), 185–261 | DOI | MR | Zbl

[11] M. Sh. Birman and T. A. Suslina, “Homogenization with corrector term for periodic elliptic differential operators”, St. Petersburg Math. J., 17:6 (2006), 897–973 | DOI | MR | Zbl

[12] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94 | MR | Zbl

[13] S. E. Pastukhova, “Improved resolvent approximations in homogenization of second order operators with periodic coefficients”, Funct. Anal. Appl., 56:4 (2022), 310–319 | DOI | MR | Zbl

[14] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | Zbl

[15] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, xiv+313 pp. | MR | MR | Zbl | Zbl

[16] T. A. Suslina, “Homogenization of a stationary periodic Maxwell system”, St. Petersburg Math. J., 16:5 (2005), 863–922 | DOI | MR | Zbl

[17] V. V. Zhikov and S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511 | DOI | MR | Zbl

[18] S. E. Pastukhova, “Homogenization estimates for singularly perturbed operators”, J. Math. Sci. (N.Y.), 251:5 (2020), 724–747 | DOI | MR | Zbl

[19] Weisheng Niu and Yue Yuan, “Convergence rate in homogenization of elliptic systems with singular perturbations”, J. Math. Phys., 60:11 (2019), 111509, 7 pp. | DOI | MR | Zbl

[20] S. E. Pastukhova, “Operator estimates in homogenization of elliptic systems of equations”, J. Math. Sci. (N.Y.), 226:4 (2017), 445–461 | DOI | MR | Zbl