@article{SM_2024_215_7_a3,
author = {S. E. Pastukhova},
title = {Error estimates taking account of correctors in homogenization of elliptic operators},
journal = {Sbornik. Mathematics},
pages = {932--952},
year = {2024},
volume = {215},
number = {7},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_7_a3/}
}
S. E. Pastukhova. Error estimates taking account of correctors in homogenization of elliptic operators. Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 932-952. http://geodesic.mathdoc.fr/item/SM_2024_215_7_a3/
[1] N. S. Bakhvalov, “Averaging of partial differential equations with rapidly oscillating coefficients”, Soviet Math. Dokl., 16:2 (1975), 351–355 | MR | Zbl
[2] A. Bensoussan, J.-L. Lions and G. Papanicolaou, Asymptotic analysis for periodic structures, Stud. Math. Appl., 5, North-Holland Publishing Co., Amsterdam–New York, 1978, xxiv+700 pp. | MR | Zbl
[3] V. V. Zhikov, S. M. Kozlov, O. A. Oleinik and Kha T'en Ngoan, “Averaging and $G$-convergence of differential operators”, Russian Math. Surveys, 34:5 (1979), 69–147 | DOI | MR | Zbl
[4] N. Bakhvalov and G. Panasenko, Homogenisation: averaging processes in periodic media. Mathematical problems in the mechanics of composite materials, Math. Appl. (Soviet Ser.), 36, Kluwer Acad. Publ., Dordrecht, 1989, xxxvi+366 pp. | DOI | MR | Zbl
[5] V. V. Jikov (Zhikov), S. M. Kozlov and O. A. Oleinik, Homogenization of differential operators and integral functionals, Springer-Verlag, Berlin, 1994, xii+570 pp. | DOI | MR | MR | Zbl | Zbl
[6] M. Sh. Birman and T. A. Suslina, “Second order periodic differential operators. Threshold properties and homogenization”, St. Petersburg Math. J., 15:5 (2004), 639–714 | DOI | MR | Zbl
[7] V. V. Zhikov, “On operator estimates in homogenization theory”, Dokl. Math., 72:1 (2005), 534–538 | MR | Zbl
[8] V. V. Zhikov and S. E. Pastukhova, “On operator estimates for some problems in homogenization theory”, Russ. J. Math. Phys., 12:4 (2005), 515–524 | MR | Zbl
[9] S. E. Pastukhova, “Approximations of resolvents of second order elliptic operators with periodic coefficients”, J. Math. Sci. (N.Y.), 267:3 (2022), 382–397 | DOI | MR | Zbl
[10] E. S. Vasilevskaya and T. A. Suslina, “Homogenization of parabolic and elliptic periodic operators in $L_2(\mathbb{R}^d)$ with the first and second correctors taken into account”, St. Petersburg Math. J., 24:2 (2013), 185–261 | DOI | MR | Zbl
[11] M. Sh. Birman and T. A. Suslina, “Homogenization with corrector term for periodic elliptic differential operators”, St. Petersburg Math. J., 17:6 (2006), 897–973 | DOI | MR | Zbl
[12] V. V. Zhikov, “Spectral method in homogenization theory”, Proc. Steklov Inst. Math., 250 (2005), 85–94 | MR | Zbl
[13] S. E. Pastukhova, “Improved resolvent approximations in homogenization of second order operators with periodic coefficients”, Funct. Anal. Appl., 56:4 (2022), 310–319 | DOI | MR | Zbl
[14] O. A. Ladyzhenskaya and N. N. Ural'tseva, Linear and quasilinear elliptic equations, Academic Press, New York–London, 1968, xviii+495 pp. | MR | Zbl
[15] D. Kinderlehrer and G. Stampacchia, An introduction to variational inequalities and their applications, Pure Appl. Math., 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York–London, 1980, xiv+313 pp. | MR | MR | Zbl | Zbl
[16] T. A. Suslina, “Homogenization of a stationary periodic Maxwell system”, St. Petersburg Math. J., 16:5 (2005), 863–922 | DOI | MR | Zbl
[17] V. V. Zhikov and S. E. Pastukhova, “Operator estimates in homogenization theory”, Russian Math. Surveys, 71:3 (2016), 417–511 | DOI | MR | Zbl
[18] S. E. Pastukhova, “Homogenization estimates for singularly perturbed operators”, J. Math. Sci. (N.Y.), 251:5 (2020), 724–747 | DOI | MR | Zbl
[19] Weisheng Niu and Yue Yuan, “Convergence rate in homogenization of elliptic systems with singular perturbations”, J. Math. Phys., 60:11 (2019), 111509, 7 pp. | DOI | MR | Zbl
[20] S. E. Pastukhova, “Operator estimates in homogenization of elliptic systems of equations”, J. Math. Sci. (N.Y.), 226:4 (2017), 445–461 | DOI | MR | Zbl