On a~family of algebraic number fields with finite 3-class field tower
Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 911-919

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\ell=3$, $k=\mathbb Q(\sqrt{-3})$ and $K=k(\sqrt[3]{a})$, where $a$ is a natural number such that $a^2\equiv 1\pmod 9$. Under the assumption that there are exactly three places not over $\ell$ that ramify in the extension $K_\infty/k_\infty$, where $k_\infty$ and $K_\infty$ are cyclotomic $\mathbb Z_3$-extensions of the fields $k$ and $K$, respectively, we study 3-class field towers for intermediate fields $K_n$ of the extension $K_\infty/K$. It is shown that for each $K_n$ the 3-class field tower of the field $K_n$ terminates already at the first step, which means that the Galois group of the extension $\mathbf H_\ell(K_n)/K_n$, where $\mathbf H_\ell(K_n)$ is the maximal unramified $\ell$-extension of the field $K_n$, is Abelian. Bibliography: 7 titles.
Keywords: Iwasawa theory, Tate module, extensions with bounded ramification, Riemann–Hurwitz formula, class field tower.
@article{SM_2024_215_7_a1,
     author = {L. V. Kuz'min},
     title = {On a~family of algebraic number fields with finite 3-class field tower},
     journal = {Sbornik. Mathematics},
     pages = {911--919},
     publisher = {mathdoc},
     volume = {215},
     number = {7},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_7_a1/}
}
TY  - JOUR
AU  - L. V. Kuz'min
TI  - On a~family of algebraic number fields with finite 3-class field tower
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 911
EP  - 919
VL  - 215
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_7_a1/
LA  - en
ID  - SM_2024_215_7_a1
ER  - 
%0 Journal Article
%A L. V. Kuz'min
%T On a~family of algebraic number fields with finite 3-class field tower
%J Sbornik. Mathematics
%D 2024
%P 911-919
%V 215
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_7_a1/
%G en
%F SM_2024_215_7_a1
L. V. Kuz'min. On a~family of algebraic number fields with finite 3-class field tower. Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 911-919. http://geodesic.mathdoc.fr/item/SM_2024_215_7_a1/