On a~family of algebraic number fields with finite 3-class field tower
Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 911-919
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $\ell=3$, $k=\mathbb Q(\sqrt{-3})$ and $K=k(\sqrt[3]{a})$, where $a$ is a natural number such that $a^2\equiv 1\pmod 9$.
Under the assumption that there are exactly three places not over $\ell$ that ramify in the extension $K_\infty/k_\infty$, where $k_\infty$ and $K_\infty$ are cyclotomic $\mathbb Z_3$-extensions of the fields $k$ and $K$, respectively, we study 3-class field towers for intermediate fields $K_n$ of the extension $K_\infty/K$.
It is shown that for each $K_n$ the 3-class field tower of the field $K_n$ terminates already at the first step, which means that the Galois group of the extension $\mathbf H_\ell(K_n)/K_n$, where $\mathbf H_\ell(K_n)$ is the maximal unramified $\ell$-extension of the field $K_n$, is Abelian.
Bibliography: 7 titles.
Keywords:
Iwasawa theory, Tate module, extensions with bounded ramification, Riemann–Hurwitz formula, class field tower.
@article{SM_2024_215_7_a1,
author = {L. V. Kuz'min},
title = {On a~family of algebraic number fields with finite 3-class field tower},
journal = {Sbornik. Mathematics},
pages = {911--919},
publisher = {mathdoc},
volume = {215},
number = {7},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_7_a1/}
}
L. V. Kuz'min. On a~family of algebraic number fields with finite 3-class field tower. Sbornik. Mathematics, Tome 215 (2024) no. 7, pp. 911-919. http://geodesic.mathdoc.fr/item/SM_2024_215_7_a1/