Mots-clés : Lie group homomorphism
@article{SM_2024_215_6_a7,
author = {A. I. Shtern},
title = {Automatic continuity of a~locally bounded homomorphism of {Lie} groups on the commutator subgroup},
journal = {Sbornik. Mathematics},
pages = {861--868},
year = {2024},
volume = {215},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a7/}
}
A. I. Shtern. Automatic continuity of a locally bounded homomorphism of Lie groups on the commutator subgroup. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 861-868. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a7/
[1] A. I. Shtern, “Corrected automatic continuity conditions for finite-dimensional representations of connected Lie groups”, Russ. J. Math. Phys., 21:1 (2014), 133–134 | DOI | MR | Zbl
[2] A. I. Shtern, “A version of van der Waerden's theorem and a proof of Mishchenko's conjecture on homomorphisms of locally compact groups”, Izv. Math., 72:1 (2008), 169–205 | DOI
[3] A. I. Shtern, “Finite-dimensional quasirepresentations of connected Lie groups and Mishchenko's conjecture”, J. Math. Sci. (N.Y.), 159:5 (2009), 653–751 | DOI
[4] R. Engelking, General topology, Monogr. Mat., 60, PWN–Polish Sci. Publ., Warsaw, 1977, 626 pp. | MR | Zbl
[5] A. I. Shtern, “The discontinuity group of a locally bounded homomorphism of a connected Lie group into a connected Lie group is commutative”, Russ. J. Math. Phys., 30:3 (2023), 397–398 | DOI | MR | Zbl
[6] M. A. Naimark and A. I. Štern (Shtern), Theory of group representations, Grundlehren Math. Wiss., 246, Springer-Verlag, New York, 1982, ix+568 pp. | MR | Zbl
[7] I. Namioka, “Separate continuity and joint continuity”, Pacific J. Math., 51:2 (1974), 515–531 | DOI | MR | Zbl
[8] V. S. Varadarajan, Lie groups, Lie algebras, and their representations, Prentice-Hall Ser. Modern Anal., Prentice-Hall, Inc., Englewood Cliffs, NJ, 1974, xiii+430 pp. | DOI | MR | Zbl