@article{SM_2024_215_6_a6,
author = {S. S. Kharibegashvili and B. G. Midodashvili},
title = {On the solvability of the boundary value~problem for one class of nonlinear systems of high-order partial differential equations},
journal = {Sbornik. Mathematics},
pages = {841--860},
year = {2024},
volume = {215},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a6/}
}
TY - JOUR AU - S. S. Kharibegashvili AU - B. G. Midodashvili TI - On the solvability of the boundary value problem for one class of nonlinear systems of high-order partial differential equations JO - Sbornik. Mathematics PY - 2024 SP - 841 EP - 860 VL - 215 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a6/ LA - en ID - SM_2024_215_6_a6 ER -
%0 Journal Article %A S. S. Kharibegashvili %A B. G. Midodashvili %T On the solvability of the boundary value problem for one class of nonlinear systems of high-order partial differential equations %J Sbornik. Mathematics %D 2024 %P 841-860 %V 215 %N 6 %U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a6/ %G en %F SM_2024_215_6_a6
S. S. Kharibegashvili; B. G. Midodashvili. On the solvability of the boundary value problem for one class of nonlinear systems of high-order partial differential equations. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 841-860. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a6/
[1] L. Hörmander, The analysis of linear partial differential operators, v. II, Grundlehren Math. Wiss., 257, Differential operators with constant coefficients, Springer-Verlag, Berlin, 1983, ix+391 pp. | MR | Zbl
[2] S. Kharibegashvili and B. Midodashvili, “On the solvability of one boundary value problem for a class of higher-order nonlinear partial differential equations”, Mediterr. J. Math., 18:4 (2021), 131, 18 pp. | DOI | MR | Zbl
[3] S. Kharibegashvili and B. Midodashvili, “The boundary value problem for one class of higher-order semilinear partial differential equations”, Proc. Inst. Math. Mech. Natl. Acad. Sci. Azerb., 49:1 (2023), 154–171 | DOI | MR | Zbl
[4] È. Mitidieri and S. I. Pokhozhaev, “A priori estimates and blow-up of solutions to nonlinear partial differential equations and inequalities”, Proc. Steklov Inst. Math., 234 (2001), 1–362
[5] V. A. Galaktionov, E. L. Mitidieri and S. I. Pohozaev, Blow-up for higher-order parabolic, hyperbolic, dispersion and Schrödinger equations, Monogr. Res. Notes Math., CRC Press, Boca Raton, FL, 2015, xxvi+543 pp. | DOI | MR | Zbl
[6] Guowang Chen, Ruili Song and Shubin Wang, “Local existence and global nonexistence theorems for a damped nonlinear hyperbolic equation”, J. Math. Anal. Appl., 368:1 (2010), 19–31 | DOI | MR | Zbl
[7] Tengyu Ma, Juan Gu and Longsuo Li, “Asymptotic behavior of solutions to a class of fourth-order nonlinear evolution equations with dispersive and dissipative terms”, J. Inequal. Appl., 2016 (2016), 318, 7 pp. | DOI | MR | Zbl
[8] Jiangbo Han, Runzhang Xu and Yanbing Yang, “Asymptotic behavior and finite time blow up for damped fourth order nonlinear evolution equation”, Asymptot. Anal., 122:3–4 (2021), 349–369 | DOI | MR | Zbl
[9] S. Kharibegashvili and B. Midodashvili, “Solvability of characteristic boundary-value problems for nonlinear equations with iterated wave operator in the principal part”, Electron. J. Differential Equations, 2008 (2008), 72, 12 pp. | MR | Zbl
[10] S. Kharibegashvili, “Boundary value problems for some classes of nonlinear wave equations”, Mem. Differential Equations Math. Phys., 46 (2009), 1–114 | MR | Zbl
[11] S. Kharibegashvili and B. Midodashvili, “A boundary value problem for higher-order semilinear partial differential equations”, Complex Var. Elliptic Equ., 64:5 (2019), 766–776 | DOI | MR | Zbl
[12] S. Kharibegashvili and B. Midodashvili, “On the solvability of one boundary value problem for one class of higher-order semilinear hyperbolic systems”, Lith. Math. J., 62:3 (2022), 360–371 | DOI | MR | Zbl
[13] S. S. Kharibegashvili and B. G. Midodashvili, “On the solvability of a special boundary value problem in a cylindrical domain for a class of nonlinear systems of partial differential equations”, Differ. Equ., 58:1 (2022), 81–91 | DOI | MR | Zbl
[14] O. A. Ladyzhenskaya, The boundary value problems of mathematical physics, Appl. Math. Sci., 49, Springer-Verlag, New York, 1985, xxx+322 pp. | DOI | MR | Zbl
[15] S. Fučík and A. Kufner, Nonlinear differential equations, Stud. Appl. Mech., 2, Elsevier Sci. Publ., Amsterdam–New York, 1980, 359 pp. | MR | Zbl
[16] W. McLean, Strongly elliptic systems and boundary integral equations, Cambridge Univ. Press, Cambridge, 2000, xiv+357 pp. | MR | Zbl
[17] V. A. Trenogin, Functional analysis, 2nd ed., Nauka, Moscow, 1993, 440 pp. (Russian) ; French transl. of 1st ed., V. Trénoguine, Analyse fonctionnelle, Traduit Russe Math., Mir, Moscow, 1985, 528 pp. | MR | Zbl | MR
[18] G. M. Fichtehholz, Differential and integral calculus, v. 1, 7th ed., Nauka, Moscow, 1969, 608 pp. (Russian); German transl., Differential- und Integralrechnung, v. I, Hochschulbücher für Math., 61, 12. Aufl., VEB Deutscher Verlag der Wissenschaften, Berlin, 1986, xiv+572 pp. | MR | Zbl