Birationally rigid hypersurfaces with quadratic singularities of low rank
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 823-840

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that hypersurfaces of degree $M$ in ${\mathbb P}^M$, $M\geqslant 5$, with at most quadratic singularities of rank at least $3$ that satisfy certain conditions of general position are birationally superrigid Fano varieties and for $M\geqslant 8$ the complement to the set of such hypersurfaces is of codimension at least $\binom{M-1}{2} + 1$ with respect to the natural parameter space. Bibliography: 18 titles.
Keywords: Fano variety, birational rigidity, quadratic singularity.
@article{SM_2024_215_6_a5,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid hypersurfaces with quadratic singularities of low rank},
     journal = {Sbornik. Mathematics},
     pages = {823--840},
     publisher = {mathdoc},
     volume = {215},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid hypersurfaces with quadratic singularities of low rank
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 823
EP  - 840
VL  - 215
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/
LA  - en
ID  - SM_2024_215_6_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid hypersurfaces with quadratic singularities of low rank
%J Sbornik. Mathematics
%D 2024
%P 823-840
%V 215
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/
%G en
%F SM_2024_215_6_a5
A. V. Pukhlikov. Birationally rigid hypersurfaces with quadratic singularities of low rank. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 823-840. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/