Birationally rigid hypersurfaces with quadratic singularities of low rank
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 823-840
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			It is shown that hypersurfaces of degree $M$ in ${\mathbb P}^M$, $M\geqslant 5$, with at most quadratic singularities of rank at least $3$ that satisfy certain conditions of general position are birationally superrigid Fano varieties and for $M\geqslant 8$ the complement to the set of such hypersurfaces is of codimension at least $\binom{M-1}{2} + 1$ with respect to the natural parameter space. 
Bibliography: 18 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Fano variety, birational rigidity, quadratic singularity.
                    
                    
                    
                  
                
                
                @article{SM_2024_215_6_a5,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid hypersurfaces with quadratic singularities of low rank},
     journal = {Sbornik. Mathematics},
     pages = {823--840},
     publisher = {mathdoc},
     volume = {215},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/}
}
                      
                      
                    A. V. Pukhlikov. Birationally rigid hypersurfaces with quadratic singularities of low rank. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 823-840. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/
