Birationally rigid hypersurfaces with quadratic singularities of low rank
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 823-840 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

It is shown that hypersurfaces of degree $M$ in ${\mathbb P}^M$, $M\geqslant 5$, with at most quadratic singularities of rank at least $3$ that satisfy certain conditions of general position are birationally superrigid Fano varieties and for $M\geqslant 8$ the complement to the set of such hypersurfaces is of codimension at least $\binom{M-1}{2} + 1$ with respect to the natural parameter space. Bibliography: 18 titles.
Keywords: Fano variety, birational rigidity, quadratic singularity.
@article{SM_2024_215_6_a5,
     author = {A. V. Pukhlikov},
     title = {Birationally rigid hypersurfaces with quadratic singularities of low rank},
     journal = {Sbornik. Mathematics},
     pages = {823--840},
     year = {2024},
     volume = {215},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/}
}
TY  - JOUR
AU  - A. V. Pukhlikov
TI  - Birationally rigid hypersurfaces with quadratic singularities of low rank
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 823
EP  - 840
VL  - 215
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/
LA  - en
ID  - SM_2024_215_6_a5
ER  - 
%0 Journal Article
%A A. V. Pukhlikov
%T Birationally rigid hypersurfaces with quadratic singularities of low rank
%J Sbornik. Mathematics
%D 2024
%P 823-840
%V 215
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/
%G en
%F SM_2024_215_6_a5
A. V. Pukhlikov. Birationally rigid hypersurfaces with quadratic singularities of low rank. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 823-840. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a5/

[1] Th. Eckl and A. Pukhlikov, “On the locus of nonrigid hypersurfaces”, Automorphisms in birational and affine geometry, Springer Proc. Math. Stat., 79, Springer, Cham, 2014, 121–139 | DOI | MR | Zbl

[2] A. Pukhlikov, Birationally rigid varieties, Math. Surveys Monogr., 190, Amer. Math. Soc., Providence, RI, 2013, vi+365 pp. | DOI | MR | Zbl

[3] I. A. Cheltsov, “Birationally rigid Fano varieties”, Russian Math. Surveys, 60:5 (2005), 875–965 | DOI | MR | Zbl

[4] A. V. Pukhlikov, “The $4n^2$-inequality for complete intersection singularities”, Arnold Math. J., 3:2 (2017), 187–196 | DOI | MR | Zbl

[5] A. V. Pukhlikov, “Birational geometry of algebraic varieties fibred into Fano double spaces”, Izv. Math., 81:3 (2017), 618–644 | DOI | MR | Zbl

[6] A. V. Pukhlikov, “Birational automorphisms of Fano hypersurfaces”, Invent. Math., 134:2 (1998), 401–426 | DOI | MR | Zbl

[7] A. V. Pukhlikov, “Birationally rigid Fano complete intersections”, J. Reine Angew. Math., 2001:541 (2001), 55–79 | DOI | MR | Zbl

[8] A. V. Pukhlikov, “Effective results in the theory of birational rigidity”, Russian Math. Surveys, 77:2 (2022), 301–354 | DOI | MR | Zbl

[9] A. V. Pukhlikov, “Birationally rigid Fano hypersurfaces with isolated singularities”, Sb. Math., 193:3 (2002), 445–471 | DOI | MR | Zbl

[10] A. V. Pukhlikov, “Birationally rigid complete intersections with a singular point of high multiplicity”, Proc. Edinb. Math. Soc. (2), 62:1 (2019), 221–239 | DOI | MR | Zbl

[11] I. Krylov, “Birational geometry of del Pezzo fibrations with terminal quotient singularities”, J. Lond. Math. Soc. (2), 97:2 (2018), 222–246 | DOI | MR | Zbl

[12] H. Abban and I. Krylov, “Birational rigidity of orbifold degree 2 del Pezzo fibrations”, Nagoya Math. J., 248 (2022), 888–921 | DOI | MR | Zbl

[13] I. Krylov, T. Okada, E. Paemurru and J. Park, $2n^2$-inequality for $cA_1$ points and applications to birational rigidity, arXiv: 2205.12743

[14] A. V. Pukhlikov, “Birationally rigid Fano fibre spaces. II”, Izv. Math., 79:4 (2015), 809–837 | DOI | MR | Zbl

[15] F. Call and G. Lyubeznik, “A simple proof of Grothendieck's theorem on the parafactoriality of local rings”, Commutative algebra: syzygies, multiplicities, and birational algebra (South Hadley, MA 1992), Contemp. Math., 159, Amer. Math. Soc., Providence, RI, 1994, 15–18 | DOI | MR | Zbl

[16] F. W. Call, “A theorem of Grothendieck using Picard groups for the algebraist”, Math. Scand., 74:2 (1994), 161–183 | DOI | MR | Zbl

[17] A. V. Pukhlikov, “Birational geometry of varieties fibred into complete intersections of codimension two”, Izv. Math., 86:2 (2022), 334–411 | DOI | MR | Zbl

[18] D. Evans and A. V. Pukhlikov, “Birationally rigid complete intersections of high codimension”, Izv. Math., 83:4 (2019), 743–769 | DOI | MR | Zbl