@article{SM_2024_215_6_a4,
author = {N. I. Pogodaev and M. V. Staritsyn},
title = {Exact formulae for the increment of the objective functional and necessary optimality conditions, alternative to {Pontryagin's} maximum principle},
journal = {Sbornik. Mathematics},
pages = {790--822},
year = {2024},
volume = {215},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a4/}
}
TY - JOUR AU - N. I. Pogodaev AU - M. V. Staritsyn TI - Exact formulae for the increment of the objective functional and necessary optimality conditions, alternative to Pontryagin's maximum principle JO - Sbornik. Mathematics PY - 2024 SP - 790 EP - 822 VL - 215 IS - 6 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a4/ LA - en ID - SM_2024_215_6_a4 ER -
%0 Journal Article %A N. I. Pogodaev %A M. V. Staritsyn %T Exact formulae for the increment of the objective functional and necessary optimality conditions, alternative to Pontryagin's maximum principle %J Sbornik. Mathematics %D 2024 %P 790-822 %V 215 %N 6 %U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a4/ %G en %F SM_2024_215_6_a4
N. I. Pogodaev; M. V. Staritsyn. Exact formulae for the increment of the objective functional and necessary optimality conditions, alternative to Pontryagin's maximum principle. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 790-822. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a4/
[1] V. A. Dykhta, “Weakly monotone solutions of the Hamilton–Jacobi inequality and optimality conditions with feedback controls”, Autom. Remote Control, 75:5 (2014), 829–844 | DOI | MR | Zbl
[2] V. A. Dykhta, “Variational necessary optimality conditions with feedback descent controls for optimal control problems”, Dokl. Math., 91:3 (2015), 394–396 | DOI | DOI
[3] V. A. Dykhta, “Feedback minimum principle: variational strengthening of the concept of extremality in optimal control”, Izv. Irkutsk. Gos. Univ. Ser. Mat., 41 (2022), 19–39 (Russian) | DOI | MR | Zbl
[4] V. F. Krotov, “Global methods to improve control and optimal control of resonance interaction of light and matter”, Modeling and control of systems in engineering, quantum mechanics, economics and biosciences (Sophia–Antipolis 1988), Lect. Notes Control Inf. Sci., 121, Springer, Berlin, 1989, 267–298 | DOI | MR
[5] L. S. Pontryagin, V. G. Boltyanskii, R. V. Gamkrelidze and E. F. Mishchenko, The mathematical theory of optimal processes, Intersci. Publ. John Wiley Sons, Inc., New York–London, 1962, viii+360 pp. | MR | Zbl
[6] A. Ya. Dubovitskii and A. A. Milyutin, “Extremum problems in the presence of restrictions”, U.S.S.R. Comput. Math. Math. Phys., 5:3 (1965), 1–80 | DOI | MR | Zbl
[7] R. J. DiPerna and P. L. Lions, “Ordinary differential equations, transport theory and Sobolev spaces”, Invent. Math., 98:3 (1989), 511–547 | DOI | MR | Zbl
[8] V. A. Srochko, Iterative methods of solution of optimal control problems, Fizmatlit, Moscow, 2000, 160 pp. (Russian)
[9] L. Ambrosio and G. Savaré, “Gradient flows of probability measures”, Handbook of differential equations: evolutionary equations, v. III, Handb. Differ. Equ., Elsevier/North-Holland, Amsterdam, 2007, 1–136 | DOI | MR | Zbl
[10] V. I. Bogachev, Weak convergence of measures, Math. Surveys Monogr., 234, Amer. Math. Soc., Providence, RI, 2018, xii+286 pp. | DOI | MR | Zbl
[11] N. N. Krasovskiĭ and A. I. Subbotin, Game-theoretical control problems, Springer Ser. Soviet Math., Springer-Verlag, New York, 1988, xii+517 pp. | MR | Zbl
[12] M. A. Lavrentyev and L. A. Lyusternik, A course of variational calculus, GONTI–NKTI, Moscow–Leningrad, 1938, 192 pp. (Russian)
[13] A. Bressan and B. Piccoli, Introduction to the mathematical theory of control, AIMS Ser. Appl. Math., 2, Amer. Inst. Math. Sci. (AIMS), Springfield, MO, 2007, xiv+312 pp. | MR | Zbl
[14] N. Pogodaev, “Program strategies for a dynamic game in the space of measures”, Optim. Lett., 13:8 (2019), 1913–1925 | DOI | MR | Zbl
[15] N. Pogodaev and M. Staritsyn, “Impulsive control of nonlocal transport equations”, J. Differential Equations, 269:4 (2020), 3585–3623 | DOI | MR | Zbl
[16] A. A. Agrachev and Yu. L. Sachkov, Control theory from the geometric viewpoint, Encyclopaedia Math. Sci., 87, Control Theory Optim., II, Springer-Verlag, Berlin, 2004, xiv+412 pp. | DOI | MR | Zbl
[17] R. J. Kipka and Yu. S. Ledyaev, “Extension of chronological calculus for dynamical systems on manifolds”, J. Differential Equations, 258:5 (2015), 1765–1790 | DOI | MR | Zbl
[18] R. Vinter, “Convex duality and nonlinear optimal control”, SIAM J. Control Optim., 31:2 (1993), 518–538 | DOI | MR | Zbl
[19] F. H. Clarke and C. Nour, “Nonconvex duality in optimal control”, SIAM J. Control Optim., 43:6 (2005), 2036–2048 | DOI | MR | Zbl
[20] V. A. Dykhta, “Nonstandard duality and nonlocal necessary optimality conditions in nonconvex optimal control problems”, Autom. Remote Control, 75:11 (2014), 1906–1921 | DOI | MR | Zbl
[21] M. Staritsyn, N. Pogodaev, R. Chertovskih and F. Lobo Pereira, “Feedback maximum principle for ensemble control of local continuity equations: an application to supervised machine learning”, IEEE Control Syst. Lett., 6 (2022), 1046–1051 | DOI | MR
[22] C. Castaing, P. Raynaud de Fitte and M. Valadier, Young measures on topological spaces. With applications in control theory and probability theory, Math. Appl., 571, Kluwer Acad. Publ., Dordrecht, 2004, xii+320 pp. | DOI | MR | Zbl
[23] V. I. Gurman, The extension principle in control problems, 2nd revised and augmented ed., Fizmatlit, Moscow, 1997, 288 pp. (Russian) | MR | Zbl
[24] N. Pogodaev, “Optimal control of continuity equations”, NoDEA Nonlinear Differential Equations Appl., 23:2 (2016), 21, 24 pp. | DOI | MR | Zbl
[25] A. V. Arutyunov, D. Yu. Karamzin and F. L. Pereira, “Conditions for the absence of jumps of the solution to the adjoint system of the maximum principle for optimal control problems with state constraints”, Proc. Steklov Inst. Math. (Suppl.), 292, suppl. 1 (2016), 27–35 | DOI | MR | Zbl
[26] M. Staritsyn and S. Sorokin, “On feedback strengthening of the maximum principle for measure differential equations”, J. Global Optim., 76:3 (2020), 587–612 | DOI | MR | Zbl