$p$-Nonsingular systems of equations over solvable groups
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 775-789 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Any group that has a subnormal series all factors in which are abelian and all factors except the last one are $p'$-torsion free, can be embedded into a group with a subnormal series of the same length, with the same properties and such that any $p$-nonsingular system of equations over this group is solvable in this group itself. Using this we prove that the minimal order of a metabelian group over which there exists a unimodular equation that is unsolvable in metabelian groups is $42$. Bibliography: 14 titles.
Keywords: equations over groups, group rings, solvable groups.
@article{SM_2024_215_6_a3,
     author = {M. A. Mikheenko},
     title = {$p${-Nonsingular} systems of equations over solvable groups},
     journal = {Sbornik. Mathematics},
     pages = {775--789},
     year = {2024},
     volume = {215},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/}
}
TY  - JOUR
AU  - M. A. Mikheenko
TI  - $p$-Nonsingular systems of equations over solvable groups
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 775
EP  - 789
VL  - 215
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/
LA  - en
ID  - SM_2024_215_6_a3
ER  - 
%0 Journal Article
%A M. A. Mikheenko
%T $p$-Nonsingular systems of equations over solvable groups
%J Sbornik. Mathematics
%D 2024
%P 775-789
%V 215
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/
%G en
%F SM_2024_215_6_a3
M. A. Mikheenko. $p$-Nonsingular systems of equations over solvable groups. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 775-789. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/

[1] M. Gerstenhaber and O. S. Rothaus, “The solution of sets of equations in groups”, Proc. Natl. Acad. Sci. U.S.A., 48:9 (1962), 1531–1533 | DOI | MR | Zbl

[2] J. Howie, “On pairs of 2-complexes and systems of equations over groups”, J. Reine Angew. Math., 1981:324 (1981), 165–174 | DOI | MR | Zbl

[3] I. M. Isaacs, Finite group theory, Grad. Stud. Math., 92, Amer. Math. Soc., Providence, RI, 2008, xii+350 pp. | DOI | MR | Zbl

[4] A. A. Klyachko, “A funny property of sphere and equations over groups”, Comm. Algebra, 21:7 (1993), 2555–2575 | DOI | MR | Zbl

[5] A. A. Klyachko, “How to generalize known results on equations over groups”, Math. Notes, 79:3 (2006), 377–386 | DOI | MR | Zbl

[6] A. A. Klyachko and M. A. Mikheenko, “Yet another Freiheitssatz: mating finite groups with locally indicable ones”, Glasg. Math. J., 65:2 (2023), 337–344 | DOI | MR | Zbl

[7] A. A. Klyachko, M. A. Mikheenko and V. A. Roman'kov, “Equations over solvable groups”, J. Algebra, 638 (2024), 739–750 | DOI | MR | Zbl

[8] A. Klyachko and A. Thom, “New topological methods to solve equations over groups”, Algebr. Geom. Topol., 17:1 (2017), 331–353 | DOI | MR | Zbl

[9] M. Krasner and L. Kaloujnine, “Produit complet des groupes de permutations et problème d'extension de groupes. III”, Acta Sci. Math. (Szeged), 14 (1951), 69–82 | MR | Zbl

[10] S. Krstić, “Systems of equations over locally $p$-indicable groups”, Invent. Math., 81:2 (1985), 373–378 | DOI | MR | Zbl

[11] M. Nitsche and A. Thom, “Universal solvability of group equations”, J. Group Theory, 25:1 (2022), 1–10 | DOI | MR | Zbl

[12] V. G. Pestov, “Hyperlinear and sofic groups: a brief guide”, Bull. Symb. Log., 14:4 (2008), 449–480 | DOI | MR | Zbl

[13] A. Thom, “Finitary approximations of groups and their applications”, Proceedings of the international congress of mathematicians (ICM 2018) (Rio de Janeiro 2018), v. III, World Sci. Publ., Hackensack, NJ, 2018, 1779–1799 | DOI | MR | Zbl

[14] A. L. Shmel'kin, “Complete nilpotent groups”, Algebra i Logika. Sem., 6:2 (1967), 111–114 (Russian) | MR | Zbl