$p$-Nonsingular systems of equations over solvable groups
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 775-789

Voir la notice de l'article provenant de la source Math-Net.Ru

Any group that has a subnormal series all factors in which are abelian and all factors except the last one are $p'$-torsion free, can be embedded into a group with a subnormal series of the same length, with the same properties and such that any $p$-nonsingular system of equations over this group is solvable in this group itself. Using this we prove that the minimal order of a metabelian group over which there exists a unimodular equation that is unsolvable in metabelian groups is $42$. Bibliography: 14 titles.
Keywords: equations over groups, group rings, solvable groups.
@article{SM_2024_215_6_a3,
     author = {M. A. Mikheenko},
     title = {$p${-Nonsingular} systems of equations over solvable groups},
     journal = {Sbornik. Mathematics},
     pages = {775--789},
     publisher = {mathdoc},
     volume = {215},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/}
}
TY  - JOUR
AU  - M. A. Mikheenko
TI  - $p$-Nonsingular systems of equations over solvable groups
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 775
EP  - 789
VL  - 215
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/
LA  - en
ID  - SM_2024_215_6_a3
ER  - 
%0 Journal Article
%A M. A. Mikheenko
%T $p$-Nonsingular systems of equations over solvable groups
%J Sbornik. Mathematics
%D 2024
%P 775-789
%V 215
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/
%G en
%F SM_2024_215_6_a3
M. A. Mikheenko. $p$-Nonsingular systems of equations over solvable groups. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 775-789. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a3/