Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 743-754
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			Let $G$ be a nontrivial compact Abelian group. The following result is proved: a real-valued function on $G$ such that the sums of shifts of it are dense in the $L_{2}$-norm in the corresponding real space of mean zero functions exists if and only if the group $G$ is connected and has an infinite countable character group.
Bibliography: 13 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
density, sums of shifts, compact groups, space $L_{2}$.
                    
                    
                    
                  
                
                
                @article{SM_2024_215_6_a1,
     author = {N. A. Dyuzhina},
     title = {Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact {Abelian} group},
     journal = {Sbornik. Mathematics},
     pages = {743--754},
     publisher = {mathdoc},
     volume = {215},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a1/}
}
                      
                      
                    TY - JOUR AU - N. A. Dyuzhina TI - Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group JO - Sbornik. Mathematics PY - 2024 SP - 743 EP - 754 VL - 215 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a1/ LA - en ID - SM_2024_215_6_a1 ER -
N. A. Dyuzhina. Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 743-754. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a1/
