Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 743-754

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $G$ be a nontrivial compact Abelian group. The following result is proved: a real-valued function on $G$ such that the sums of shifts of it are dense in the $L_{2}$-norm in the corresponding real space of mean zero functions exists if and only if the group $G$ is connected and has an infinite countable character group. Bibliography: 13 titles.
Keywords: density, sums of shifts, compact groups, space $L_{2}$.
@article{SM_2024_215_6_a1,
     author = {N. A. Dyuzhina},
     title = {Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact {Abelian} group},
     journal = {Sbornik. Mathematics},
     pages = {743--754},
     publisher = {mathdoc},
     volume = {215},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a1/}
}
TY  - JOUR
AU  - N. A. Dyuzhina
TI  - Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 743
EP  - 754
VL  - 215
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a1/
LA  - en
ID  - SM_2024_215_6_a1
ER  - 
%0 Journal Article
%A N. A. Dyuzhina
%T Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group
%J Sbornik. Mathematics
%D 2024
%P 743-754
%V 215
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a1/
%G en
%F SM_2024_215_6_a1
N. A. Dyuzhina. Density of the sums of shifts of a~single function in the $L_2^0$ space on a~compact Abelian group. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 743-754. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a1/