On universal (in the sense of signs) Fourier series with respect to the Walsh system
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 717-742

Voir la notice de l'article provenant de la source Math-Net.Ru

We study the problem of the existence of (universal) functions whose Fourier–Walsh series are universal in the sense of signs in the class of almost finite measurable functions. Bibliography: 34 titles.
Keywords: universal function, Fourier–Walsh series, convergence almost everywhere.
@article{SM_2024_215_6_a0,
     author = {M. G. Grigoryan},
     title = {On universal (in the sense of signs) {Fourier} series with respect to the {Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {717--742},
     publisher = {mathdoc},
     volume = {215},
     number = {6},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - On universal (in the sense of signs) Fourier series with respect to the Walsh system
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 717
EP  - 742
VL  - 215
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/
LA  - en
ID  - SM_2024_215_6_a0
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T On universal (in the sense of signs) Fourier series with respect to the Walsh system
%J Sbornik. Mathematics
%D 2024
%P 717-742
%V 215
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/
%G en
%F SM_2024_215_6_a0
M. G. Grigoryan. On universal (in the sense of signs) Fourier series with respect to the Walsh system. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 717-742. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/