On universal (in the sense of signs) Fourier series with respect to the Walsh system
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 717-742 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We study the problem of the existence of (universal) functions whose Fourier–Walsh series are universal in the sense of signs in the class of almost finite measurable functions. Bibliography: 34 titles.
Keywords: universal function, Fourier–Walsh series, convergence almost everywhere.
@article{SM_2024_215_6_a0,
     author = {M. G. Grigoryan},
     title = {On universal (in the sense of signs) {Fourier} series with respect to the {Walsh} system},
     journal = {Sbornik. Mathematics},
     pages = {717--742},
     year = {2024},
     volume = {215},
     number = {6},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/}
}
TY  - JOUR
AU  - M. G. Grigoryan
TI  - On universal (in the sense of signs) Fourier series with respect to the Walsh system
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 717
EP  - 742
VL  - 215
IS  - 6
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/
LA  - en
ID  - SM_2024_215_6_a0
ER  - 
%0 Journal Article
%A M. G. Grigoryan
%T On universal (in the sense of signs) Fourier series with respect to the Walsh system
%J Sbornik. Mathematics
%D 2024
%P 717-742
%V 215
%N 6
%U http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/
%G en
%F SM_2024_215_6_a0
M. G. Grigoryan. On universal (in the sense of signs) Fourier series with respect to the Walsh system. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 717-742. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/

[1] G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl

[2] J. Marcinkiewicz, “Sur les nombres dérivés”, Fund. Math., 24 (1935), 305–308 | DOI | Zbl

[3] V. G. Krotov, “On the smoothness of universal Marcinkiewicz functions and universal trigonometrical series”, Soviet Math. (Iz. VUZ), 35:8 (1991), 24–28 | MR | Zbl

[4] K.-G. Große-Erdmann, Holomorphe Monster und universelle Funktionen, Ph.D. thesis, Univ. of Trier, Trier, 1987, Mitt. Math. Sem. Giessen, 176, Selbstverlag des Math. Inst., Giessen, 1987, iv+84 pp. | MR

[5] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2 (1952), 72–87 | DOI | MR | Zbl

[6] W. Luh, “Universal approximation properties of overconvergent power series on open sets”, Analysis, 6:2–3 (1986), 191–207 | DOI | MR | Zbl

[7] M. G. Grigoryan, “Universal Fourier series”, Math. Notes, 108:2 (2020), 282–285 | DOI | MR | Zbl

[8] M. G. Grigoryan and A. A. Sargsyan, “On the universal function for the class $L^{p}[0,1]$, $p\in(0,1)$”, J. Funct. Anal., 270:8 (2016), 3111–3133 | DOI | MR | Zbl

[9] M. G. Grigoryan and L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. Math., 85:2 (2021), 241–261 | DOI | MR | Zbl

[10] M. G. Grigoryan, “Functions with universal Fourier–Walsh series”, Sb. Math., 211:6 (2020), 850–874 | DOI | MR | Zbl

[11] M. G. Grigoryan, “On the universal and strong $(L^1,L^\infty)$-property related to Fourier–Walsh series”, Banach J. Math. Anal., 11:3 (2017), 698–712 | DOI | MR | Zbl

[12] M. G. Grigoryan, “Functions, universal with respect to the classical systems”, Adv. Oper. Theory, 5:4 (2020), 1414–1433 | DOI | MR | Zbl

[13] M. G. Grigoryan, “On the existence and structure of universal functions”, Dokl. Math., 103:1 (2021), 23–25 | DOI | MR | Zbl

[14] M. G. Grigoryan, “On universal Fourier series in the Walsh system”, Siberian Math. J., 63:5 (2022), 868–882 | DOI | MR | Zbl

[15] M. G. Grigoryan and S. V. Konyagin, “On Fourier series in the multiple trigonometric system”, Russian Math. Surveys, 78:4 (2023), 782–784 | DOI | MR | Zbl

[16] D. E. Menshov, “Partial sums of trigonometric series”, Mat. Sb., 20(62):2 (1947), 197–238 (Russian) | MR | Zbl

[17] A. A. Talalyan, “On the convergence almost everywhere of subsequences of partial sums of general orthogonal series”, Izv. Akad. Nauk Arm. SSR Ser. Fiz.-Mat., 10:3 (1957), 17–34 (Russian) | MR | Zbl

[18] P. L. Ul'yanov, “Representation of functions by series and classes $\phi(L)$”, Russian Math. Surveys, 27:2 (1972), 1–54 | DOI | MR | Zbl

[19] V. G. Krotov, “Representation of measurable functions by series in the Faber–Schauder system, and universal series”, Math. USSR-Izv., 11:1 (1977), 205–218 | DOI | MR | Zbl

[20] V. I. Ivanov, “Representation of functions by series in metric symmetric spaces without linear functionals”, Proc. Steklov Inst. Math., 189 (1990), 37–85 | MR | Zbl

[21] M. G. Grigorian (Grigoryan), “On the representation of functions by orthogonal series in weighted $L^{p}$ spaces”, Studia Math., 134:3 (1999), 207–216 | DOI | MR | Zbl

[22] M. G. Grigoryan, “Representation of functions in the classes $L^{p}[0, 1]$, $1\leq p2$, by orthogonal series”, Dokl. Akad. Nauk Arm. SSR, 67:5 (1978), 269–274 (Russian) | Zbl

[23] M. G. Grigorian (Grigoryan), “An example of universal orthogonal series”, J. Contemp. Math. Anal., 35:4 (2000), 23–43 | MR | Zbl

[24] G. G. Gevorkyan and K. A. Navasardyan, “On Walsh series with monotone coefficients”, Izv. Math., 63:1 (1999), 37–55 | DOI | MR | Zbl

[25] C. Watari, “Mean convergence of Walsh Fourier series”, Tohoku Math. J. (2), 16:2 (1964), 183–188 | DOI | MR | Zbl

[26] A. Kolmogoroff (Kolmogorov), “Sur les fonctions harmoniques conjugées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | Zbl

[27] A. A. Talaljan (Talalyan) and F. G. Arutjunjan, “On the convergence of Haar series to $+\infty$”, Amer. Math. Soc. Transl. Ser. 2, 72, Amer. Math. Soc., Providence, RI, 1968, 1–8 | DOI | MR | Zbl

[28] B. S. Kašin (Kashin), “On a complete orthonormal system”, Math. USSR-Sb., 28:3 (1976), 315–324 | DOI | MR | Zbl

[29] J. L. Walsh, “A closed set of normal orthogonal functions”, Amer. J. Math., 45:1 (1923), 5–24 | DOI | MR | Zbl

[30] R. E. A. C. Paley, “A remarkable series of orthogonal functions. I”, Proc. London Math. Soc. (2), 34 (1932), 241–264 ; II, 265–279 | DOI | MR | Zbl | DOI | MR | Zbl

[31] B. Golubov, A. Efimov and V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | Zbl

[32] K. A. Navasardyan, “On null-series by double Walsh system”, J. Contemp. Math. Anal., 29:1 (1994), 50–68 | MR | Zbl

[33] M. G. Grigoryan and K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083 | DOI | MR | Zbl

[34] M. G. Grigoryan and A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Sb. Math., 209:1 (2018), 35–55 | DOI | MR | Zbl