On universal (in the sense of signs) Fourier series with respect to the Walsh system
Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 717-742
Voir la notice de l'article provenant de la source Math-Net.Ru
We study the problem of the existence of (universal) functions whose Fourier–Walsh series are universal in the sense of signs in the class of almost finite measurable functions.
Bibliography: 34 titles.
Keywords:
universal function, Fourier–Walsh series, convergence almost everywhere.
@article{SM_2024_215_6_a0,
author = {M. G. Grigoryan},
title = {On universal (in the sense of signs) {Fourier} series with respect to the {Walsh} system},
journal = {Sbornik. Mathematics},
pages = {717--742},
publisher = {mathdoc},
volume = {215},
number = {6},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/}
}
M. G. Grigoryan. On universal (in the sense of signs) Fourier series with respect to the Walsh system. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 717-742. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/