@article{SM_2024_215_6_a0,
author = {M. G. Grigoryan},
title = {On universal (in the sense of signs) {Fourier} series with respect to the {Walsh} system},
journal = {Sbornik. Mathematics},
pages = {717--742},
year = {2024},
volume = {215},
number = {6},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/}
}
M. G. Grigoryan. On universal (in the sense of signs) Fourier series with respect to the Walsh system. Sbornik. Mathematics, Tome 215 (2024) no. 6, pp. 717-742. http://geodesic.mathdoc.fr/item/SM_2024_215_6_a0/
[1] G. D. Birkhoff, “Démonstration d'un théorème élémentaire sur les fonctions entières”, C. R. Acad. Sci. Paris, 189 (1929), 473–475 | Zbl
[2] J. Marcinkiewicz, “Sur les nombres dérivés”, Fund. Math., 24 (1935), 305–308 | DOI | Zbl
[3] V. G. Krotov, “On the smoothness of universal Marcinkiewicz functions and universal trigonometrical series”, Soviet Math. (Iz. VUZ), 35:8 (1991), 24–28 | MR | Zbl
[4] K.-G. Große-Erdmann, Holomorphe Monster und universelle Funktionen, Ph.D. thesis, Univ. of Trier, Trier, 1987, Mitt. Math. Sem. Giessen, 176, Selbstverlag des Math. Inst., Giessen, 1987, iv+84 pp. | MR
[5] G. R. MacLane, “Sequences of derivatives and normal families”, J. Analyse Math., 2 (1952), 72–87 | DOI | MR | Zbl
[6] W. Luh, “Universal approximation properties of overconvergent power series on open sets”, Analysis, 6:2–3 (1986), 191–207 | DOI | MR | Zbl
[7] M. G. Grigoryan, “Universal Fourier series”, Math. Notes, 108:2 (2020), 282–285 | DOI | MR | Zbl
[8] M. G. Grigoryan and A. A. Sargsyan, “On the universal function for the class $L^{p}[0,1]$, $p\in(0,1)$”, J. Funct. Anal., 270:8 (2016), 3111–3133 | DOI | MR | Zbl
[9] M. G. Grigoryan and L. N. Galoyan, “Functions universal with respect to the trigonometric system”, Izv. Math., 85:2 (2021), 241–261 | DOI | MR | Zbl
[10] M. G. Grigoryan, “Functions with universal Fourier–Walsh series”, Sb. Math., 211:6 (2020), 850–874 | DOI | MR | Zbl
[11] M. G. Grigoryan, “On the universal and strong $(L^1,L^\infty)$-property related to Fourier–Walsh series”, Banach J. Math. Anal., 11:3 (2017), 698–712 | DOI | MR | Zbl
[12] M. G. Grigoryan, “Functions, universal with respect to the classical systems”, Adv. Oper. Theory, 5:4 (2020), 1414–1433 | DOI | MR | Zbl
[13] M. G. Grigoryan, “On the existence and structure of universal functions”, Dokl. Math., 103:1 (2021), 23–25 | DOI | MR | Zbl
[14] M. G. Grigoryan, “On universal Fourier series in the Walsh system”, Siberian Math. J., 63:5 (2022), 868–882 | DOI | MR | Zbl
[15] M. G. Grigoryan and S. V. Konyagin, “On Fourier series in the multiple trigonometric system”, Russian Math. Surveys, 78:4 (2023), 782–784 | DOI | MR | Zbl
[16] D. E. Menshov, “Partial sums of trigonometric series”, Mat. Sb., 20(62):2 (1947), 197–238 (Russian) | MR | Zbl
[17] A. A. Talalyan, “On the convergence almost everywhere of subsequences of partial sums of general orthogonal series”, Izv. Akad. Nauk Arm. SSR Ser. Fiz.-Mat., 10:3 (1957), 17–34 (Russian) | MR | Zbl
[18] P. L. Ul'yanov, “Representation of functions by series and classes $\phi(L)$”, Russian Math. Surveys, 27:2 (1972), 1–54 | DOI | MR | Zbl
[19] V. G. Krotov, “Representation of measurable functions by series in the Faber–Schauder system, and universal series”, Math. USSR-Izv., 11:1 (1977), 205–218 | DOI | MR | Zbl
[20] V. I. Ivanov, “Representation of functions by series in metric symmetric spaces without linear functionals”, Proc. Steklov Inst. Math., 189 (1990), 37–85 | MR | Zbl
[21] M. G. Grigorian (Grigoryan), “On the representation of functions by orthogonal series in weighted $L^{p}$ spaces”, Studia Math., 134:3 (1999), 207–216 | DOI | MR | Zbl
[22] M. G. Grigoryan, “Representation of functions in the classes $L^{p}[0, 1]$, $1\leq p2$, by orthogonal series”, Dokl. Akad. Nauk Arm. SSR, 67:5 (1978), 269–274 (Russian) | Zbl
[23] M. G. Grigorian (Grigoryan), “An example of universal orthogonal series”, J. Contemp. Math. Anal., 35:4 (2000), 23–43 | MR | Zbl
[24] G. G. Gevorkyan and K. A. Navasardyan, “On Walsh series with monotone coefficients”, Izv. Math., 63:1 (1999), 37–55 | DOI | MR | Zbl
[25] C. Watari, “Mean convergence of Walsh Fourier series”, Tohoku Math. J. (2), 16:2 (1964), 183–188 | DOI | MR | Zbl
[26] A. Kolmogoroff (Kolmogorov), “Sur les fonctions harmoniques conjugées et les séries de Fourier”, Fund. Math., 7 (1925), 24–29 | Zbl
[27] A. A. Talaljan (Talalyan) and F. G. Arutjunjan, “On the convergence of Haar series to $+\infty$”, Amer. Math. Soc. Transl. Ser. 2, 72, Amer. Math. Soc., Providence, RI, 1968, 1–8 | DOI | MR | Zbl
[28] B. S. Kašin (Kashin), “On a complete orthonormal system”, Math. USSR-Sb., 28:3 (1976), 315–324 | DOI | MR | Zbl
[29] J. L. Walsh, “A closed set of normal orthogonal functions”, Amer. J. Math., 45:1 (1923), 5–24 | DOI | MR | Zbl
[30] R. E. A. C. Paley, “A remarkable series of orthogonal functions. I”, Proc. London Math. Soc. (2), 34 (1932), 241–264 ; II, 265–279 | DOI | MR | Zbl | DOI | MR | Zbl
[31] B. Golubov, A. Efimov and V. Skvortsov, Walsh series and transforms. Theory and applications, Math. Appl. (Soviet Ser.), 64, Kluwer Acad. Publ., Dordrecht, 1991, xiv+368 pp. | DOI | MR | Zbl
[32] K. A. Navasardyan, “On null-series by double Walsh system”, J. Contemp. Math. Anal., 29:1 (1994), 50–68 | MR | Zbl
[33] M. G. Grigoryan and K. A. Navasardyan, “Universal functions in ‘correction’ problems guaranteeing the convergence of Fourier–Walsh series”, Izv. Math., 80:6 (2016), 1057–1083 | DOI | MR | Zbl
[34] M. G. Grigoryan and A. A. Sargsyan, “The structure of universal functions for $L^p$-spaces, $p\in(0,1)$”, Sb. Math., 209:1 (2018), 35–55 | DOI | MR | Zbl