Polynomial approximation on parabolic manifolds
Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 703-716

Voir la notice de l'article provenant de la source Math-Net.Ru

On a parabolic manifold polynomials are defined in terms of a special exhaustion function, and the problem of polynomial approximation of analytic functions is considered. An example of a parabolic manifold on which the class of polynomials consists of the constants alone is presented. On regularly parabolic manifolds, which possess a large reserve of polynomials, an analogue of the celebrated Bernstein–Walsh theorem is proved. Bibliography: 28 titles.
Keywords: plurisubharmonic functions, Stein parabolic manifolds, exhaustion function, polynomials, rapid approximation.
@article{SM_2024_215_5_a5,
     author = {A. Sadullaev and A. A. Atamuratov},
     title = {Polynomial approximation on parabolic manifolds},
     journal = {Sbornik. Mathematics},
     pages = {703--716},
     publisher = {mathdoc},
     volume = {215},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a5/}
}
TY  - JOUR
AU  - A. Sadullaev
AU  - A. A. Atamuratov
TI  - Polynomial approximation on parabolic manifolds
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 703
EP  - 716
VL  - 215
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_5_a5/
LA  - en
ID  - SM_2024_215_5_a5
ER  - 
%0 Journal Article
%A A. Sadullaev
%A A. A. Atamuratov
%T Polynomial approximation on parabolic manifolds
%J Sbornik. Mathematics
%D 2024
%P 703-716
%V 215
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_5_a5/
%G en
%F SM_2024_215_5_a5
A. Sadullaev; A. A. Atamuratov. Polynomial approximation on parabolic manifolds. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 703-716. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a5/