Mots-clés : Liouville foliation.
@article{SM_2024_215_5_a4,
author = {G. P. Palshin},
title = {Topology of the {Liouville} foliation in the generalized constrained three-vortex problem},
journal = {Sbornik. Mathematics},
pages = {667--702},
year = {2024},
volume = {215},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a4/}
}
G. P. Palshin. Topology of the Liouville foliation in the generalized constrained three-vortex problem. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 667-702. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a4/
[1] H. Helmholtz, “Über Integrale der hydrodynamischen Gleichungen, welche den Wirbelbewegungen entsprechen”, J. Reine Angew. Math., 1858:55 (1858), 22–55 | DOI | MR | Zbl
[2] H. Poincaré, Théorie des tourbillons, G. Carré, Ed., Paris, 1893, 211 pp.
[3] G. Kirchhoff, Vorlesungen über mathematische Physik. Mechanik, B. G. Teubner, Leipzig, 1876, ix+466 pp. | Zbl
[4] W. Gröbli, Specielle Probleme über die Bewegung geradliniger paralleler Wirbelfäden, Zürcher und Furrer, Zürich, 1877, 86 pp.
[5] N. E. Joukowsky, “On cutting vortex filaments”, Mat. Sb., 17:4 (1895), 702–719 (Russian) | Zbl
[6] D. N. Goryachev, “Several cases of motion of rectilinear parallel vortices”, Uch. Zap. Mosk. Univ. Otdel. Fiz. Mat. Nauk, 16 (1899), 1–106 (Russian) | Zbl
[7] A. L. Fetter and A. A. Svidzinsky, “Vortices in a trapped dilute Bose–Einstein condensate”, J. Phys. Condens. Matter, 13:12 (2001), R135–R194 | DOI
[8] P. J. Torres, P. G. Kevrekidis, D. J. Frantzeskakis, R. Carretero-González, P. Schmelcher and D. S. Hall, “Dynamics of vortex dipoles in confined Bose–Einstein condensates”, Phys. Lett. A, 375:33 (2011), 3044–3050 | DOI
[9] N. Papanicolaou and T. N. Tomaras, “Dynamics of magnetic vortices”, Nuclear Phys. B, 360:2–3 (1991), 425–462 | DOI | MR
[10] S. Komineas and N. Papanicolaou, “Topology and dynamics in ferromagnetic media”, Phys. D, 99:1 (1996), 81–107 | DOI | MR | Zbl
[11] S. Komineas and N. Papanicolaou, “Gröbli solution for three magnetic vortices”, J. Math. Phys., 51:4 (2010), 042705, 18 pp. | DOI | MR | Zbl
[12] S. Smale, “Topology and mechanics. I”, Invent. Math., 10 (1970), 305–331 ; “ II. The planar $n$-body problem”, 11 (1970), 45–64 | DOI | MR | Zbl | DOI | MR | Zbl
[13] M. P. Kharlamov, “Topological analysis of classical integrable systems in the dynamics of the rigid body”, Soviet Math. Dokl., 28:3 (1983), 802–805 | MR | Zbl
[14] A. T. Fomenko, “The topology of surfaces of constant energy in integrable Hamiltonian systems, and obstructions to integrability”, Math. USSR-Izv., 29:3 (1987), 629–658 | DOI | MR | Zbl
[15] A. T. Fomenko, “Morse theory of integrable Hamiltonian systems”, Soviet Math. Dokl., 33:2 (1986), 502–506 | MR | Zbl
[16] M. P. Kharlamov, Topological analysis of integrable problems of rigid body dynamics, Leningrad University Publishing House, Leningrad, 1988, 200 pp. (Russian) | MR
[17] A. T. Fomenko and H. Tsishang (Zieschang), “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[18] A. A. Oshemkov, “Morse functions on two-dimensional surfaces. Encoding of singularities”, Proc. Steklov Inst. Math., 205 (1995), 119–127 | MR | Zbl
[19] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | Zbl
[20] A. A. Oshemkov, “Classification of hyperbolic singularities of rank zero of integrable Hamiltonian systems”, Sb. Math., 201:8 (2010), 1153–1191 | DOI | MR | Zbl
[21] S. V. Sokolov and P. E. Ryabov, “Bifurcation analysis of the dynamics of two vortices in a Bose–Einstein condensate. The case of intensities of opposite signs”, Regul. Chaotic Dyn., 22:8 (2017), 976–995 | DOI | MR | Zbl
[22] P. E. Ryabov and A. A. Shadrin, “Bifurcation diagram of one generalized integrable model of vortex dynamics”, Regul. Chaotic Dyn., 24:4 (2019), 418–431 | DOI | MR | Zbl
[23] P. E. Ryabov and S. V. Sokolov, “Phase topology of two vortices of identical intensities in a Bose–Einstein condensate”, Russ. J. Nonlinear Dyn., 15:1 (2019), 59–66 | DOI | MR | Zbl
[24] P. E. Ryabov, “Bifurcation of four Liouville tori in one generalized integrable model of vortex dynamics”, Dokl. Phys., 64:8 (2019), 325–329 | DOI
[25] E. N. Selivanova, “The topology of the problem of three-point vortices”, Proc. Steklov Inst. Math., 205 (1995), 129–137 | MR | Zbl
[26] G. P. Palshin, “On noncompact bifurcation in one generalized model of vortex dynamics”, Theoret. and Math. Phys., 212:1 (2022), 972–983 | DOI | MR | Zbl
[27] A. Yu. Moskvin, “Topology of the Liouville foliation on a 2-sphere in the Dullin–Matveev integrable case”, Sb. Math., 199:3 (2008), 411–448 | DOI | MR | Zbl
[28] H. R. Dullin and V. S. Matveev, “A new integrable system on the sphere”, Math. Res. Lett., 11:5–6 (2004), 715–722 | DOI | MR | Zbl
[29] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | MR | Zbl
[30] D. A. Fedoseev and A. T. Fomenko, “Noncompact bifurcations of integrable dynamic systems”, J. Math. Sci. (N.Y.), 248:6 (2020), 810–827 | DOI | MR | Zbl
[31] D. A. Fedoseev, “Bifurcation diagrams of natural Hamiltonian systems on Bertrand manifolds”, Moscow Univ. Math. Bull., 70:1 (2015), 44–47 | DOI | MR | Zbl
[32] V. A. Kibkalo, “Noncompactness property of fibers and singularities of non-Euclidean Kovalevskaya system on pencil of Lie algebras”, Moscow Univ. Math. Bull., 75:6 (2020), 263–267 | DOI | MR | Zbl
[33] V. A. Kibkalo, “First Appelrot class of pseudo-Euclidean Kovalevskaya system”, Chebyshevskii Sb., 24:1 (2023), 69–88 (Russian) | DOI | MR | Zbl
[34] M. K. Altuev and V. A. Kibkalo, “Topological analysis of pseudo-Euclidean Euler top for special values of the parameters”, Sb. Math., 214:3 (2023), 334–348 | DOI | MR | Zbl
[35] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | MR | Zbl
[36] S. S. Nikolaenko, “Topological classification of Hamiltonian systems on two-dimensional noncompact manifolds”, Sb. Math., 211:8 (2020), 1127–1158 | DOI | MR | Zbl
[37] S. S. Nikolaenko, “Topological classification of non-compact 3-atoms with a circle action”, Chebyshevskii Sb., 22:5 (2021), 185–197 (Russian) | DOI | MR | Zbl
[38] A. A. Thiele, “Steady-state motion of magnetic domains”, Phys. Rev. Lett., 30:6 (1973), 230–233 | DOI
[39] M. Budyansky, M. Uleysky and S. Prants, “Hamiltonian fractals and chaotic scattering of passive particles by a topographical vortex and an alternating current”, Phys. D, 195:3-4 (2004), 369–378 | DOI | MR | Zbl
[40] E. A. Ryzhov and K. V. Koshel, “Dynamics of a vortex pair interacting with a fixed point vortex”, Europhys. Lett. EPL, 102:4 (2013), 44004, 6 pp. | DOI
[41] K. V. Koshel, J. N. Reinaud, G. Riccardi and E. A. Ryzhov, “Entrapping of a vortex pair interacting with a fixed point vortex revisited. I. Point vortices”, Phys. Fluids, 30:9 (2018), 096603 | DOI
[42] A. V. Bolsinov, A. V. Borisov and I. S. Mamaev, “Topology and stability of integrable systems”, Russian Math. Surveys, 65:2 (2010), 259–318 | DOI | MR | Zbl
[43] G. P. Palshin, “New bifurcation diagram in one model of vortex dynamics”, Voronezh Spring Mathematical School “Contemporary methods in the theory of boundary value problems. Pontryagin Readings XXXII”, Part 2, Itogi Nauki. Tekhn. Sovr. Mat. i Prilozhen., 209, VINITI, Moscow, 2022, 33–41 (Russian) | DOI | MR
[44] K. Efstathiou and A. Giacobbe, “The topology associated with cusp singular points”, Nonlinearity, 25:12 (2012), 3409–3422 | DOI | MR | Zbl
[45] A. Bolsinov, L. Guglielmi and E. Kudryavtseva, “Symplectic invariants for parabolic orbits and cusp singularities of integrable systems”, Philos. Trans. Roy. Soc. A, 376:2131 (2018), 20170424, 29 pp. | DOI | MR | Zbl
[46] V. A. Kibkalo, “Parabolicity of degenerate singularities in axisymmetric Euler systems with a gyrostat”, Moscow Univ. Math. Bull., 78:1 (2023), 28–36 | DOI | MR | Zbl