Planar locally minimal trees with boundaries on a~circle
Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 658-666

Voir la notice de l'article provenant de la source Math-Net.Ru

A planar tree has a convex minimal realization if it is planar equivalent to a locally minimal tree whose boundary is the set of vertices of a convex polygon. If this polygon is inscribed in a circle, then the tree is said to have a circular minimal realization. We construct a wide class of planar trees that have convex minimal realizations but do not have circular ones. Bibliography: 9 titles.
Keywords: full Steiner trees, Steiner minimal trees, Steiner problem, locally minimal trees, twisting number of a full planar Steiner tree.
@article{SM_2024_215_5_a3,
     author = {I. N. Mikhailov},
     title = {Planar locally minimal trees with boundaries on a~circle},
     journal = {Sbornik. Mathematics},
     pages = {658--666},
     publisher = {mathdoc},
     volume = {215},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a3/}
}
TY  - JOUR
AU  - I. N. Mikhailov
TI  - Planar locally minimal trees with boundaries on a~circle
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 658
EP  - 666
VL  - 215
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_5_a3/
LA  - en
ID  - SM_2024_215_5_a3
ER  - 
%0 Journal Article
%A I. N. Mikhailov
%T Planar locally minimal trees with boundaries on a~circle
%J Sbornik. Mathematics
%D 2024
%P 658-666
%V 215
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_5_a3/
%G en
%F SM_2024_215_5_a3
I. N. Mikhailov. Planar locally minimal trees with boundaries on a~circle. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 658-666. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a3/