Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph
Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 634-657
Voir la notice de l'article provenant de la source Math-Net.Ru
Lower and upper bounds are derived for the minimum number of edges in subgraphs of the graph $G(n,3,1)$ induced by $l$ vertices, where $l \sim cn^2$. The results in this work improve the estimates for this quantity that were obtained previously in the case under study.
Bibliography: 16 titles.
Keywords:
distance graphs, Johnson graphs, extremal graph theory.
@article{SM_2024_215_5_a2,
author = {N. A. Dubinin and E. A. Neustroeva and A. M. Raigorodskii and Ya. K. Shubin},
title = {Lower and upper bounds for the minimum number of edges in some subgraphs of the {Johnson} graph},
journal = {Sbornik. Mathematics},
pages = {634--657},
publisher = {mathdoc},
volume = {215},
number = {5},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/}
}
TY - JOUR AU - N. A. Dubinin AU - E. A. Neustroeva AU - A. M. Raigorodskii AU - Ya. K. Shubin TI - Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph JO - Sbornik. Mathematics PY - 2024 SP - 634 EP - 657 VL - 215 IS - 5 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/ LA - en ID - SM_2024_215_5_a2 ER -
%0 Journal Article %A N. A. Dubinin %A E. A. Neustroeva %A A. M. Raigorodskii %A Ya. K. Shubin %T Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph %J Sbornik. Mathematics %D 2024 %P 634-657 %V 215 %N 5 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/ %G en %F SM_2024_215_5_a2
N. A. Dubinin; E. A. Neustroeva; A. M. Raigorodskii; Ya. K. Shubin. Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 634-657. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/