Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph
Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 634-657

Voir la notice de l'article provenant de la source Math-Net.Ru

Lower and upper bounds are derived for the minimum number of edges in subgraphs of the graph $G(n,3,1)$ induced by $l$ vertices, where $l \sim cn^2$. The results in this work improve the estimates for this quantity that were obtained previously in the case under study. Bibliography: 16 titles.
Keywords: distance graphs, Johnson graphs, extremal graph theory.
@article{SM_2024_215_5_a2,
     author = {N. A. Dubinin and E. A. Neustroeva and A. M. Raigorodskii and Ya. K. Shubin},
     title = {Lower and upper bounds for the minimum number of edges in some subgraphs of the {Johnson} graph},
     journal = {Sbornik. Mathematics},
     pages = {634--657},
     publisher = {mathdoc},
     volume = {215},
     number = {5},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/}
}
TY  - JOUR
AU  - N. A. Dubinin
AU  - E. A. Neustroeva
AU  - A. M. Raigorodskii
AU  - Ya. K. Shubin
TI  - Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 634
EP  - 657
VL  - 215
IS  - 5
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/
LA  - en
ID  - SM_2024_215_5_a2
ER  - 
%0 Journal Article
%A N. A. Dubinin
%A E. A. Neustroeva
%A A. M. Raigorodskii
%A Ya. K. Shubin
%T Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph
%J Sbornik. Mathematics
%D 2024
%P 634-657
%V 215
%N 5
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/
%G en
%F SM_2024_215_5_a2
N. A. Dubinin; E. A. Neustroeva; A. M. Raigorodskii; Ya. K. Shubin. Lower and upper bounds for the minimum number of edges in some subgraphs of the Johnson graph. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 634-657. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a2/