Orbital invariants of billiards and linearly integrable geodesic flows
Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 573-611 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Orbital invariants of integrable topological billiards with two degrees of freedom are discovered and calculated in the case of constant energy of the system. These invariants (rotation vectors) are calculated in terms of rotation functions on one-parameter families of Liouville 2-tori. An analogue of Liouville's theorem is proved for a piecewise smooth billiard in a neighbourhood of a regular level. Action-angle variables are introduced. A general formula for rotation functions is obtained. There was a conjecture due to Fomenko that the rotation functions of topological billiards are monotone. This conjecture was confirmed for many important systems, but interesting billiard systems with nonmonotone rotation functions were also discovered. In particular, orbital invariants of billiard books realizing (up to Liouville equivalence) linearly integrable geodesic flows of 2-dimensional surfaces are calculated. After a suitable change of the parameters of the flows these functions become monotone. Bibliography: 45 titles.
Keywords: integrable billiard, rotation function.
Mots-clés : billiard book, action-angle variables, orbital invariant
@article{SM_2024_215_5_a0,
     author = {G. V. Belozerov and A. T. Fomenko},
     title = {Orbital invariants of billiards and~linearly integrable geodesic flows},
     journal = {Sbornik. Mathematics},
     pages = {573--611},
     year = {2024},
     volume = {215},
     number = {5},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a0/}
}
TY  - JOUR
AU  - G. V. Belozerov
AU  - A. T. Fomenko
TI  - Orbital invariants of billiards and linearly integrable geodesic flows
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 573
EP  - 611
VL  - 215
IS  - 5
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_5_a0/
LA  - en
ID  - SM_2024_215_5_a0
ER  - 
%0 Journal Article
%A G. V. Belozerov
%A A. T. Fomenko
%T Orbital invariants of billiards and linearly integrable geodesic flows
%J Sbornik. Mathematics
%D 2024
%P 573-611
%V 215
%N 5
%U http://geodesic.mathdoc.fr/item/SM_2024_215_5_a0/
%G en
%F SM_2024_215_5_a0
G. V. Belozerov; A. T. Fomenko. Orbital invariants of billiards and linearly integrable geodesic flows. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 573-611. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a0/

[1] A. T. Fomenko, “Billiards with variable configuration in Hamiltonian geometry and topology”, Proceedings of Lobachevsky Readings (Kazan 2022), Tr. Mat. Tsentra im. Lobachevskogo, 62, Kazan Federal University Publishing House, Kazan, 2022, 112–115 (Russian)

[2] A. T. Fomenko, “Billiards with variable configuration and billiards with slipping in Hamiltonian geometry and topology”, Mat. i Teoret. Komp'ut. Nauki, 1:1 (2023), 49–68 (Russian)

[3] A. T. Fomenko and V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954 | DOI

[4] A. T. Fomenko and V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979 | DOI | MR | Zbl

[5] A. T. Fomenko and V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, Eur. J. Math., 8:4 (2022), 1392–1423 | DOI | MR | Zbl

[6] V. A. Kibkalo, A. T. Fomenko and I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82, 37–64 | DOI | MR | Zbl

[7] V. Dragović and M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl

[8] V. Dragović and M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl

[9] V. Dragović, S. Gasiorek and M. Radnović, “Billiard ordered games and books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150 | DOI | MR | Zbl

[10] V. V. Fokicheva (Vedyushkina), “Description of singularities for system ‘billiard in an ellipse’ ”, Moscow Univ. Math. Bull., 67:5–6 (2012), 217–220 | DOI | MR | Zbl

[11] V. V. Fokicheva (Vedyushkina), “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | MR | Zbl

[12] V. V. Fokicheva (Vedyushkina), “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl

[13] V. V. Fokicheva (Vedyushkina), “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | MR | Zbl

[14] V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5 | DOI | MR | Zbl

[15] V. V. Vedyushkina, “Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas”, Moscow Univ. Math. Bull., 73:4 (2018), 150–155 | DOI | MR | Zbl

[16] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | MR | Zbl

[17] V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $so(4)$ under zero area integral”, Moscow Univ. Math. Bull., 71:3 (2016), 119–123 | DOI | MR | Zbl

[18] V. A. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 210:5 (2019), 625–662 | DOI | MR | Zbl

[19] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | MR | Zbl

[20] I. F. Kobtsev, “The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions”, Moscow Univ. Math. Bull., 73:2 (2018), 64–70 | DOI | MR | Zbl

[21] S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, J. Math. Sci. (N.Y.), 259:5 (2021), 712–729 | DOI | MR | Zbl

[22] G. V. Belozerov, “Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space”, Sb. Math., 211:11 (2020), 1503–1538 | DOI | MR | Zbl

[23] V. V. Vedyushkina and V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664 | DOI | MR | Zbl

[24] V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211 | DOI | MR

[25] E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci. (N.Y.), 259:5 (2021), 656–675 | DOI | MR | Zbl

[26] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28 | DOI | MR | Zbl

[27] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl

[28] V. V. Kozlov and D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | Zbl

[29] S. E. Pustovoitov, “Topological analysis of an elliptic billiard in a fourth-order potential field”, Moscow Univ. Math. Bull., 76:5 (2021), 193–205 | DOI | MR | Zbl

[30] S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233 | DOI | MR | Zbl

[31] V. V. Vedyushkina and S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196 | DOI | MR | Zbl

[32] G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160 | DOI | MR | Zbl

[33] G. V. Belozerov, “Topology of isoenergy 5-surfaces of a three-axial ellipsoid with a Hooke potential”, Moscow Univ. Math. Bull., 77:6 (2022), 277–289 | DOI | MR | Zbl

[34] A. T. Fomenko and V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow Univ. Math. Bull., 74:3 (2019), 98–107 | DOI | MR | Zbl

[35] V. V. Vedyushkina, A. T. Fomenko and I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl

[36] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | Zbl

[37] V. V. Vedyushkina, “Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses”, Moscow Univ. Math. Bull., 76:4 (2021), 177–180 | DOI | MR | Zbl

[38] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | MR | Zbl

[39] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl

[40] E. A. Kudryavtseva, “Liouville integrable generalized billiard flows and Poncelet type theorems”, J. Math. Sci. (N.Y.), 225:4 (2017), 611–638 | DOI | MR | Zbl

[41] A. T. Fomenko and Kh. Tsishang (H. Zieschang), “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl

[42] V. Dragović and M. Radnović, “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 17–30 | DOI | MR | Zbl

[43] V. Dragović and M. Radnović, “Bicentennial of the Great Poncelet Theorem (1813–2013): current advances”, Bull. Amer. Math. Soc. (N.S.), 51:3 (2014), 373–445 | DOI | MR | Zbl

[44] V. Dragović and M. Radnović, “Periods of pseudo-integrable billiards”, Arnold Math. J., 1:1 (2015), 69–73 | DOI | MR | Zbl

[45] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173 | DOI | MR | Zbl