Mots-clés : billiard book, action-angle variables, orbital invariant
@article{SM_2024_215_5_a0,
author = {G. V. Belozerov and A. T. Fomenko},
title = {Orbital invariants of billiards and~linearly integrable geodesic flows},
journal = {Sbornik. Mathematics},
pages = {573--611},
year = {2024},
volume = {215},
number = {5},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_5_a0/}
}
G. V. Belozerov; A. T. Fomenko. Orbital invariants of billiards and linearly integrable geodesic flows. Sbornik. Mathematics, Tome 215 (2024) no. 5, pp. 573-611. http://geodesic.mathdoc.fr/item/SM_2024_215_5_a0/
[1] A. T. Fomenko, “Billiards with variable configuration in Hamiltonian geometry and topology”, Proceedings of Lobachevsky Readings (Kazan 2022), Tr. Mat. Tsentra im. Lobachevskogo, 62, Kazan Federal University Publishing House, Kazan, 2022, 112–115 (Russian)
[2] A. T. Fomenko, “Billiards with variable configuration and billiards with slipping in Hamiltonian geometry and topology”, Mat. i Teoret. Komp'ut. Nauki, 1:1 (2023), 49–68 (Russian)
[3] A. T. Fomenko and V. V. Vedyushkina, “Billiards and integrable systems”, Russian Math. Surveys, 78:5 (2023), 881–954 | DOI
[4] A. T. Fomenko and V. V. Vedyushkina, “Evolutionary force billiards”, Izv. Math., 86:5 (2022), 943–979 | DOI | MR | Zbl
[5] A. T. Fomenko and V. A. Kibkalo, “Topology of Liouville foliations of integrable billiards on table-complexes”, Eur. J. Math., 8:4 (2022), 1392–1423 | DOI | MR | Zbl
[6] V. A. Kibkalo, A. T. Fomenko and I. S. Kharcheva, “Realizing integrable Hamiltonian systems by means of billiard books”, Trans. Moscow Math. Soc., 82, 37–64 | DOI | MR | Zbl
[7] V. Dragović and M. Radnović, “Bifurcations of Liouville tori in elliptical billiards”, Regul. Chaotic Dyn., 14:4–5 (2009), 479–494 | DOI | MR | Zbl
[8] V. Dragović and M. Radnović, Poncelet porisms and beyond. Integrable billiards, hyperelliptic Jacobians and pencils of quadrics, Front. Math., Birkhäuser/Springer Basel AG, Basel, 2011, viii+293 pp. | DOI | MR | Zbl
[9] V. Dragović, S. Gasiorek and M. Radnović, “Billiard ordered games and books”, Regul. Chaotic Dyn., 27:2 (2022), 132–150 | DOI | MR | Zbl
[10] V. V. Fokicheva (Vedyushkina), “Description of singularities for system ‘billiard in an ellipse’ ”, Moscow Univ. Math. Bull., 67:5–6 (2012), 217–220 | DOI | MR | Zbl
[11] V. V. Fokicheva (Vedyushkina), “Classification of billiard motions in domains bounded by confocal parabolas”, Sb. Math., 205:8 (2014), 1201–1221 | DOI | MR | Zbl
[12] V. V. Fokicheva (Vedyushkina), “Description of singularities for billiard systems bounded by confocal ellipses or hyperbolas”, Moscow Univ. Math. Bull., 69:4 (2014), 148–158 | DOI | MR | Zbl
[13] V. V. Fokicheva (Vedyushkina), “A topological classification of billiards in locally planar domains bounded by arcs of confocal quadrics”, Sb. Math., 206:10 (2015), 1463–1507 | DOI | MR | Zbl
[14] V. V. Vedyushkina, “The Liouville foliation of nonconvex topological billiards”, Dokl. Math., 97:1 (2018), 1–5 | DOI | MR | Zbl
[15] V. V. Vedyushkina, “Fomenko–Zieschang invariants of topological billiards bounded by confocal parabolas”, Moscow Univ. Math. Bull., 73:4 (2018), 150–155 | DOI | MR | Zbl
[16] V. V. Vedyushkina, “The Fomenko–Zieschang invariants of nonconvex topological billiards”, Sb. Math., 210:3 (2019), 310–363 | DOI | MR | Zbl
[17] V. A. Kibkalo, “The topology of the analog of Kovalevskaya integrability case on the Lie algebra $so(4)$ under zero area integral”, Moscow Univ. Math. Bull., 71:3 (2016), 119–123 | DOI | MR | Zbl
[18] V. A. Kibkalo, “Topological classification of Liouville foliations for the Kovalevskaya integrable case on the Lie algebra $\operatorname{so}(4)$”, Sb. Math., 210:5 (2019), 625–662 | DOI | MR | Zbl
[19] V. V. Vedyushkina and I. S. Kharcheva, “Billiard books model all three-dimensional bifurcations of integrable Hamiltonian systems”, Sb. Math., 209:12 (2018), 1690–1727 | DOI | MR | Zbl
[20] I. F. Kobtsev, “The geodesic flow on a two-dimensional ellipsoid in the field of an elastic force. Topological classification of solutions”, Moscow Univ. Math. Bull., 73:2 (2018), 64–70 | DOI | MR | Zbl
[21] S. E. Pustovoytov, “Topological analysis of a billiard in elliptic ring in a potential field”, J. Math. Sci. (N.Y.), 259:5 (2021), 712–729 | DOI | MR | Zbl
[22] G. V. Belozerov, “Topological classification of integrable geodesic billiards on quadrics in three-dimensional Euclidean space”, Sb. Math., 211:11 (2020), 1503–1538 | DOI | MR | Zbl
[23] V. V. Vedyushkina and V. N. Zav'yalov, “Realization of geodesic flows with a linear first integral by billiards with slipping”, Sb. Math., 213:12 (2022), 1645–1664 | DOI | MR | Zbl
[24] V. N. Zav'yalov, “Billiard with slipping by an arbitrary rational angle”, Sb. Math., 214:9 (2023), 1191–1211 | DOI | MR
[25] E. E. Karginova, “Liouville foliation of topological billiards in the Minkowski plane”, J. Math. Sci. (N.Y.), 259:5 (2021), 656–675 | DOI | MR | Zbl
[26] E. E. Karginova, “Billiards bounded by arcs of confocal quadrics on the Minkowski plane”, Sb. Math., 211:1 (2020), 1–28 | DOI | MR | Zbl
[27] G. D. Birkhoff, Dynamical systems, Amer. Math. Soc. Colloq. Publ., 9, Amer. Math. Soc., New York, 1927, viii+295 pp. | MR | Zbl
[28] V. V. Kozlov and D. V. Treshchev, Billiards. A genetic introduction to the dynamics of systems with impacts, Transl. Math. Monogr., 89, Amer. Math. Soc., Providence, RI, 1991, viii+171 pp. | DOI | MR | Zbl
[29] S. E. Pustovoitov, “Topological analysis of an elliptic billiard in a fourth-order potential field”, Moscow Univ. Math. Bull., 76:5 (2021), 193–205 | DOI | MR | Zbl
[30] S. E. Pustovoitov, “Topological analysis of a billiard bounded by confocal quadrics in a potential field”, Sb. Math., 212:2 (2021), 211–233 | DOI | MR | Zbl
[31] V. V. Vedyushkina and S. E. Pustovoitov, “Classification of Liouville foliations of integrable topological billiards in magnetic fields”, Sb. Math., 214:2 (2023), 166–196 | DOI | MR | Zbl
[32] G. V. Belozerov, “Topological classification of billiards bounded by confocal quadrics in three-dimensional Euclidean space”, Sb. Math., 213:2 (2022), 129–160 | DOI | MR | Zbl
[33] G. V. Belozerov, “Topology of isoenergy 5-surfaces of a three-axial ellipsoid with a Hooke potential”, Moscow Univ. Math. Bull., 77:6 (2022), 277–289 | DOI | MR | Zbl
[34] A. T. Fomenko and V. V. Vedyushkina, “Billiards and integrability in geometry and physics. New scope and new potential”, Moscow Univ. Math. Bull., 74:3 (2019), 98–107 | DOI | MR | Zbl
[35] V. V. Vedyushkina, A. T. Fomenko and I. S. Kharcheva, “Modeling nondegenerate bifurcations of closures of solutions for integrable systems with two degrees of freedom by integrable topological billiards”, Dokl. Math., 97:2 (2018), 174–176 | DOI | MR | Zbl
[36] A. V. Bolsinov and A. T. Fomenko, Integrable Hamiltonian systems. Geometry, topology, classification, Chapman Hall/CRC, Boca Raton, FL, 2004, xvi+730 pp. | DOI | MR | Zbl
[37] V. V. Vedyushkina, “Orbital invariants of flat billiards bounded by arcs of confocal quadrics and containing focuses”, Moscow Univ. Math. Bull., 76:4 (2021), 177–180 | DOI | MR | Zbl
[38] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable topological billiards and equivalent dynamical systems”, Izv. Math., 81:4 (2017), 688–733 | DOI | MR | Zbl
[39] V. F. Lazutkin, KAM theory and semiclassical approximations to eigenfunctions, Ergeb. Math. Grenzgeb. (3), 24, Springer-Verlag, Berlin, 1993, x+387 pp. | DOI | MR | Zbl
[40] E. A. Kudryavtseva, “Liouville integrable generalized billiard flows and Poncelet type theorems”, J. Math. Sci. (N.Y.), 225:4 (2017), 611–638 | DOI | MR | Zbl
[41] A. T. Fomenko and Kh. Tsishang (H. Zieschang), “A topological invariant and a criterion for the equivalence of integrable Hamiltonian systems with two degrees of freedom”, Math. USSR-Izv., 36:3 (1991), 567–596 | DOI | MR | Zbl
[42] V. Dragović and M. Radnović, “Minkowski plane, confocal conics, and billiards”, Publ. Inst. Math. (Beograd) (N.S.), 94:108 (2013), 17–30 | DOI | MR | Zbl
[43] V. Dragović and M. Radnović, “Bicentennial of the Great Poncelet Theorem (1813–2013): current advances”, Bull. Amer. Math. Soc. (N.S.), 51:3 (2014), 373–445 | DOI | MR | Zbl
[44] V. Dragović and M. Radnović, “Periods of pseudo-integrable billiards”, Arnold Math. J., 1:1 (2015), 69–73 | DOI | MR | Zbl
[45] V. V. Vedyushkina (Fokicheva) and A. T. Fomenko, “Integrable geodesic flows on orientable two-dimensional surfaces and topological billiards”, Izv. Math., 83:6 (2019), 1137–1173 | DOI | MR | Zbl