Producing new semi-orthogonal decompositions in arithmetic geometry
Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 511-542 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

This paper is devoted to constructing new admissible subcategories and semi-orthogonal decompositions of triangulated categories out of old ones. For two triangulated subcategories $\mathcal{T}$ and $\mathcal{T}'$ of some category $\mathcal{D}$ and a semi-orthogonal decomposition $(\mathcal{A},\mathcal{B})$ of $\mathcal{T}$ we look either for a decomposition $(\mathcal{A}',\mathcal{B}')$ of $\mathcal{T}'$ such that there are no nonzero $\mathcal{D}$-morphisms from $\mathcal{A}$ into $\mathcal{A}'$ and from $\mathcal{B}$ into $\mathcal{B}'$, or for a decomposition $(\mathcal{A}_{\mathcal{D}},\mathcal{B}_{\mathcal{D}})$ of $\mathcal{D}$ such that $\mathcal{A}_{\mathcal{D}}\cap \mathcal{T}=\mathcal{A}$ and $\mathcal{B}_{\mathcal{D}}\cap \mathcal{T}=\mathcal{B}$. We prove some general existence statements (that also extend to semi-orthogonal decompositions of arbitrary length) and apply them to various derived categories of coherent sheaves over a scheme $X$ that is proper over the spectrum of a Noetherian ring $R$. This produces a one-to-one correspondence between semi-orthogonal decompositions of $D_{\mathrm{perf}}(X)$ and $D^{\mathrm{b}}(\operatorname{coh}(X))$; the latter extend to $D^-(\operatorname{coh}(X))$, $D^+_{\mathrm{coh}}(\operatorname{Qcoh}(X))$, $D_{\mathrm{coh}}(\operatorname{Qcoh}(X))$ and $D(\operatorname{Qcoh}(X))$ under very mild assumptions. In particular, we obtain a broad generalization of a theorem of Karmazyn, Kuznetsov and Shinder. These applications rely on some recent results of Neeman that express $D^{\mathrm{b}}(\operatorname{coh}(X))$ and $D^-(\operatorname{coh}(X))$ in terms of $D_{\mathrm{perf}}(X)$. We also prove a rather similar new theorem that relates $D^+_{\mathrm{coh}}(\operatorname{Qcoh}(X))$ and $D_{\mathrm{coh}}(\operatorname{Qcoh}(X))$ (these} are certain modifications of the bounded below and the unbounded derived category of coherent sheaves on $X$ to homological functors $D_{\mathrm{perf}}(X)^{\mathrm{op}}\to R\text{-}\mathrm{mod}$. Moreover, we discuss an application of this theorem to the construction of certain adjoint functors. Bibliography: 30 titles.
Keywords: triangulated category, adjoint functor, admissible subcategory, quasi-coherent sheaves, perfect complexes.
Mots-clés : semi-orthogonal decomposition
@article{SM_2024_215_4_a3,
     author = {M. V. Bondarko},
     title = {Producing new semi-orthogonal decompositions in arithmetic geometry},
     journal = {Sbornik. Mathematics},
     pages = {511--542},
     year = {2024},
     volume = {215},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/}
}
TY  - JOUR
AU  - M. V. Bondarko
TI  - Producing new semi-orthogonal decompositions in arithmetic geometry
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 511
EP  - 542
VL  - 215
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/
LA  - en
ID  - SM_2024_215_4_a3
ER  - 
%0 Journal Article
%A M. V. Bondarko
%T Producing new semi-orthogonal decompositions in arithmetic geometry
%J Sbornik. Mathematics
%D 2024
%P 511-542
%V 215
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/
%G en
%F SM_2024_215_4_a3
M. V. Bondarko. Producing new semi-orthogonal decompositions in arithmetic geometry. Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 511-542. http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/

[1] A. A. Beilinson, J. Bernstein and P. Deligne, “Faisceaux pervers”, Analysis and topology on singular spaces (Luminy 1981), v. I, Astérisque, 100, Soc. Math. France, Paris, 1982, 5–171 | MR | Zbl

[2] D. Bergh and O. M. Schnürer, “Conservative descent for semi-orthogonal decompositions”, Adv. Math., 360 (2020), 106882, 39 pp. | DOI | MR | Zbl

[3] M. Bökstedt and A. Neeman, “Homotopy limits in triangulated categories”, Compos. Math., 86:2 (1993), 209–234 | MR | Zbl

[4] A. I. Bondal, “Representation of associative algebras and coherent sheaves”, Math. USSR-Izv., 34:1 (1990), 23–42 | DOI | MR | Zbl

[5] A. I. Bondal and M. M. Kapranov, “Representable functors, Serre functors, and mutations”, Math. USSR-Izv., 35:3 (1990), 519–541 | DOI | MR | Zbl

[6] A. I. Bondal and M. Van den Bergh, “Generators and representability of functors in commutative and noncommutative geometry”, Mosc. Math. J., 3:1 (2003), 1–36 | DOI | MR | Zbl

[7] M. V. Bondarko, “Weight structures vs. $t$-structures; weight filtrations, spectral sequences, and complexes (for motives and in general)”, J. K-theory, 6:3 (2010), 387–504 ; arXiv: 0704.4003 | DOI | MR | Zbl

[8] M. V. Bondarko, On $t$-structures adjacent and orthogonal to weight structures, arXiv: 2403.07855

[9] M. V. Bondarko, Producing “new” semi-orthogonal decompositions in arithmetic geometry, arXiv: 2203.07315

[10] M. V. Bondarko and V. A. Sosnilo, “On purely generated $\alpha$-smashing weight structures and weight-exact localizations”, J. Algebra, 535 (2019), 407–455 | DOI | MR | Zbl

[11] A. J. de Jong, “Smoothness, semi-stability and alterations”, Inst. Hautes Études Sci. Publ. Math., 83 (1996), 51–93 | DOI | MR | Zbl

[12] R. Hartshorne, Residues and duality, Lecture notes of a seminar on the work of A. Grothendieck, given at Harvard 1963/64, with an appendix by P. Deligne, Lecture Notes in Math., 20, Springer-Verlag, Berlin–New York, 1966, vii+423 pp. | MR | Zbl

[13] J. Karmazyn, A. Kuznetsov and E. Shinder, “Derived categories of singular surfaces”, J. Eur. Math. Soc. (JEMS), 24:2 (2022), 461–526 | DOI | MR | Zbl

[14] B. Keller, “On differential graded categories”, International congress of mathematicians, v. II, Eur. Math. Soc. (EMS), Zürich, 2006, 151–190 | MR | Zbl

[15] H. Krause, “Smashing subcategories and the telescope conjecture — an algebraic approach”, Invent. Math., 139:1 (2000), 99–133 | DOI | MR | Zbl

[16] A. Kuznetsov, “Base change for semiorthogonal decompositions”, Compos. Math., 147:3 (2011), 852–876 | DOI | MR | Zbl

[17] T. Y. Lam, Lectures on modules and rings, Grad. Texts in Math., 189, Reprint of the 1st ed., Springer-Verlag, New York, 2012, xxiv+557 pp. | DOI | MR | Zbl

[18] A. Neeman, “The Grothendieck duality theorem via Bousfield's techniques and Brown representability”, J. Amer. Math. Soc., 9:1 (1996), 205–236 | DOI | MR | Zbl

[19] A. Neeman, “On a theorem of Brown and Adams”, Topology, 36:3 (1997), 619–645 | DOI | MR | Zbl

[20] A. Neeman, Triangulated categories, Ann. of Math. Stud., 148, Princeton Univ. Press, Princeton, NJ, 2001, viii+449 pp. | DOI | MR | Zbl

[21] A. Neeman, Triangulated categories with a single compact generator and a Brown representability theorem, arXiv: 1804.02240

[22] A. Neeman, The category $[\mathcal{T}^c]^{\mathrm{op}}$ as functors on $\mathcal{T}^{b}_c$, arXiv: 1806.05777

[23] D. O. Orlov, “Triangulated categories of singularities and equivalences between Landau–Ginzburg models”, Sb. Math., 197:12 (2006), 1827–1840 | DOI | MR | Zbl

[24] L. Positselski and O. M. Schnürer, “Unbounded derived categories of small and big modules: is the natural functor fully faithful?”, J. Pure Appl. Algebra, 225:11 (2021), 106722, 23 pp. | DOI | MR | Zbl

[25] R. G. Swan, “K-theory of coherent rings”, J. Algebra Appl., 18:9 (2019), 1950161, 16 pp. | DOI | MR | Zbl

[26] R. Takahashi, “Classifying subcategories of modules over a commutative Noetherian ring”, J. Lond. Math. Soc. (2), 78:3 (2008), 767–782 | DOI | MR | Zbl

[27] M. Temkin, “Desingularization of quasi-excellent schemes in characteristic zero”, Adv. Math., 219:2 (2008), 488–522 | DOI | MR | Zbl

[28] M. Temkin, “Tame distillation and desingularization by $p$-alterations”, Ann. of Math. (2), 186:1 (2017), 97–126 | DOI | MR | Zbl

[29] R. W. Thomason and T. Trobaugh, “Higher algebraic K-theory of schemes and of derived categories”, The Grothendieck Festschrift, A collection of articles written in honor of the 60th birthday of A. Grothendieck, v. III, Progr. Math., 88, Birkhäuser Boston, Boston, MA, 1990, 247–435 | DOI | MR | Zbl

[30] The Stacks project https://stacks.math.columbia.edu/