Producing new semi-orthogonal decompositions in arithmetic geometry
Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 511-542

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper is devoted to constructing new admissible subcategories and semi-orthogonal decompositions of triangulated categories out of old ones. For two triangulated subcategories $\mathcal{T}$ and $\mathcal{T}'$ of some category $\mathcal{D}$ and a semi-orthogonal decomposition $(\mathcal{A},\mathcal{B})$ of $\mathcal{T}$ we look either for a decomposition $(\mathcal{A}',\mathcal{B}')$ of $\mathcal{T}'$ such that there are no nonzero $\mathcal{D}$-morphisms from $\mathcal{A}$ into $\mathcal{A}'$ and from $\mathcal{B}$ into $\mathcal{B}'$, or for a decomposition $(\mathcal{A}_{\mathcal{D}},\mathcal{B}_{\mathcal{D}})$ of $\mathcal{D}$ such that $\mathcal{A}_{\mathcal{D}}\cap \mathcal{T}=\mathcal{A}$ and $\mathcal{B}_{\mathcal{D}}\cap \mathcal{T}=\mathcal{B}$. We prove some general existence statements (that also extend to semi-orthogonal decompositions of arbitrary length) and apply them to various derived categories of coherent sheaves over a scheme $X$ that is proper over the spectrum of a Noetherian ring $R$. This produces a one-to-one correspondence between semi-orthogonal decompositions of $D_{\mathrm{perf}}(X)$ and $D^{\mathrm{b}}(\operatorname{coh}(X))$; the latter extend to $D^-(\operatorname{coh}(X))$, $D^+_{\mathrm{coh}}(\operatorname{Qcoh}(X))$, $D_{\mathrm{coh}}(\operatorname{Qcoh}(X))$ and $D(\operatorname{Qcoh}(X))$ under very mild assumptions. In particular, we obtain a broad generalization of a theorem of Karmazyn, Kuznetsov and Shinder. These applications rely on some recent results of Neeman that express $D^{\mathrm{b}}(\operatorname{coh}(X))$ and $D^-(\operatorname{coh}(X))$ in terms of $D_{\mathrm{perf}}(X)$. We also prove a rather similar new theorem that relates $D^+_{\mathrm{coh}}(\operatorname{Qcoh}(X))$ and $D_{\mathrm{coh}}(\operatorname{Qcoh}(X))$ (these} are certain modifications of the bounded below and the unbounded derived category of coherent sheaves on $X$ to homological functors $D_{\mathrm{perf}}(X)^{\mathrm{op}}\to R\text{-}\mathrm{mod}$. Moreover, we discuss an application of this theorem to the construction of certain adjoint functors. Bibliography: 30 titles.
Keywords: triangulated category, adjoint functor, admissible subcategory, quasi-coherent sheaves, perfect complexes.
Mots-clés : semi-orthogonal decomposition
@article{SM_2024_215_4_a3,
     author = {M. V. Bondarko},
     title = {Producing new semi-orthogonal decompositions in arithmetic geometry},
     journal = {Sbornik. Mathematics},
     pages = {511--542},
     publisher = {mathdoc},
     volume = {215},
     number = {4},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/}
}
TY  - JOUR
AU  - M. V. Bondarko
TI  - Producing new semi-orthogonal decompositions in arithmetic geometry
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 511
EP  - 542
VL  - 215
IS  - 4
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/
LA  - en
ID  - SM_2024_215_4_a3
ER  - 
%0 Journal Article
%A M. V. Bondarko
%T Producing new semi-orthogonal decompositions in arithmetic geometry
%J Sbornik. Mathematics
%D 2024
%P 511-542
%V 215
%N 4
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/
%G en
%F SM_2024_215_4_a3
M. V. Bondarko. Producing new semi-orthogonal decompositions in arithmetic geometry. Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 511-542. http://geodesic.mathdoc.fr/item/SM_2024_215_4_a3/