@article{SM_2024_215_4_a2,
author = {M. V. Balashov},
title = {Lipschitz continuity of the metric projection operator and convergence of gradient methods},
journal = {Sbornik. Mathematics},
pages = {494--510},
year = {2024},
volume = {215},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_4_a2/}
}
M. V. Balashov. Lipschitz continuity of the metric projection operator and convergence of gradient methods. Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 494-510. http://geodesic.mathdoc.fr/item/SM_2024_215_4_a2/
[1] R. R. Phelps, “Convex sets and nearest points”, Proc. Amer. Math. Soc., 8 (1957), 790–797 | DOI | MR | Zbl
[2] T. Abatzoglou, “The metric projection on $C^2$ manifolds in Banach spaces”, J. Approx. Theory, 26:3 (1979), 204–211 | DOI | MR | Zbl
[3] J.-Ph. Vial, “Strong and weak convexity of sets and functions”, Math. Oper. Res., 8:2 (1983), 231–259 | DOI | MR | Zbl
[4] F. H. Clarke, R. J. Stern and P. R. Wolenski, “Proximal smoothness and the lower-$C^2$ property”, J. Convex Anal., 2:1–2 (1995), 117–144 | MR | Zbl
[5] B. O. Björnestål, “Local Lipschitz continuity of the metric projection operator”, Approximation theory, Papers, VIth semester, Stefan Banach Internat. Math. Center, Warsaw, 1975, Banach Center Publ., 4, PWN–Polish Sci. Publ., Warsaw, 1979, 43–53 | DOI | MR | Zbl
[6] J. W. Daniel, “The continuity of metric projections as functions of the data”, J. Approx. Theory, 12:3 (1974), 234–239 | DOI | MR | Zbl
[7] E. S. Polovinkin and M. V. Balashov, Elements of convex and strongly convex analysis, 2nd ed., Fizmatlit, Moscow, 2007, 438 pp. (Russian) | Zbl
[8] V. I. Berdyšev (Berdyshev), “Continuity of a multivalued mapping connected with the problem of minimizing a functional”, Math. USSR-Izv., 16:3 (1981), 431–456 | DOI | MR | Zbl
[9] G. E. Ivanov, “Sharp estimates for the moduli of continuity of metric projections onto weakly convex sets”, Izv. Math., 79:4 (2015), 668–697 | DOI | MR | Zbl
[10] E. S. Levitin and B. T. Polyak, “Constrained minimization methods”, U.S.S.R. Comput. Math. Math. Phys., 6:5 (1966), 1–50 | DOI | MR | Zbl
[11] V. M. Veliov, “On the convexity of integrals of multivalued mappings: applications in control theory”, J. Optim. Theory Appl., 54:3 (1987), 541–563 | DOI | MR | Zbl
[12] G. Braun, A. Carderera, C. W. Combettes, H. Hassani, A. Karbasi, A. Mokhtari and S. Pokutta, Conditional gradient methods, arXiv: 2211.14103v1
[13] M. V. Balashov, “Maximization of a function with Lipschitz continuous gradient”, J. Math. Sci. (N.Y.), 209:1 (2015), 12–18 | DOI | MR | Zbl
[14] M. V. Balashov, B. T. Polyak and A. A. Tremba, “Gradient projection and conditional gradient methods for constrained nonconvex minimization”, Numer. Funct. Anal. Optim., 41:7 (2020), 822–849 | DOI | MR | Zbl
[15] A. V. Marinov, “On uniform constants of strong uniqueness in Chebyshev approximations and fundamental results of N. G. Chebotarev”, Izv. Math., 75:3 (2011), 603–630 | DOI | MR | Zbl
[16] B. T. Polyak, “Minimization of unsmooth functionals”, U.S.S.R. Comput. Math. Math. Phys., 9:3 (1969), 14–29 | DOI | MR | Zbl
[17] D. Davis, D. Drusvyatskiy, K. J. MacPhee and C. Paquette, Subgradient methods for sharp weakly convex functions, arXiv: 1803.02461v1
[18] Xiao Li, Zhihui Zhu, A. Man-Cho So and J. D. Lee, Incremental methods for weakly convex optimization, arXiv: 1907.11687v1
[19] R. Schneider and A. Uschmajew, “Convergence results for projected line-search methods on varieties of low-rank matrices via Łojasiewicz inequality”, SIAM J. Optim., 25:1 (2015), 622–646 | DOI | MR | Zbl
[20] P.-A. Absil, R. Mahony and R. Sepulchre, Optimization algorithms on matrix manifolds, Princeton Univ. Press, Princeton, NJ, 2008, xvi+224 pp. | DOI | MR | Zbl
[21] M. V. Balashov, “The gradient projection algorithm for a proximally smooth set and a function with Lipschitz continuous gradient”, Sb. Math., 211:4 (2020), 481–504 | DOI | MR | Zbl
[22] M. V. Balashov, “Gradient projection method on matrix manifolds”, Comput. Math. Math. Phys., 60:9 (2020), 1403–1411 | DOI | MR | Zbl
[23] M. V. Balashov, “About the gradient projection algorithm for a strongly convex function and a proximally smooth set”, J. Convex Anal., 24:2 (2017), 493–500 | MR | Zbl
[24] M. V. Balashov and M. O. Golubev, “About the Lipschitz property of the metric projection in the Hilbert space”, J. Math. Anal. Appl., 394:2 (2012), 545–551 | DOI | MR | Zbl
[25] M. V. Balashov, “Sufficient conditions for the linear convergence of an algorithm for finding the metric projection of a point onto a convex compact set”, Math. Notes, 113:5 (2023), 632–641 | DOI | MR | Zbl
[26] N. V. Efimov and S. B. Stechkin, “Approximation properties of sets in normed linear spaces”: S. B. Stechkin, Selected papers, Fizmatlit, Moscow, 1998, 270–281 (Russian) | MR | Zbl
[27] M. V. Balashov and K. Z. Biglov, “The strong convexity supporting condition and the Lipschitz condition for the metric projection”, Math. Notes, 115:2 (2024), 164–172
[28] I. Necoara, Yu. Nesterov and F. Glineur, “Linear convergence of first order methods for non-strongly convex optimization”, Math. Program., 175:1–2(A) (2019), 69–107 | DOI | MR | Zbl
[29] Y. Bello-Cruz, Guoyin Li and T. T. A. Nghia, “On the linear convergence of forward-backward splitting method: Part I — Convergence analysis”, J. Optim. Theory Appl., 188:2 (2021), 378–401 | DOI | MR | Zbl