@article{SM_2024_215_4_a1,
author = {I. V. Baibulov and O. V. Sarafanov},
title = {The spectrum of the $C^*$-algebra of singular integral operators with semi-almost periodic coefficients},
journal = {Sbornik. Mathematics},
pages = {464--493},
year = {2024},
volume = {215},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_4_a1/}
}
TY - JOUR AU - I. V. Baibulov AU - O. V. Sarafanov TI - The spectrum of the $C^*$-algebra of singular integral operators with semi-almost periodic coefficients JO - Sbornik. Mathematics PY - 2024 SP - 464 EP - 493 VL - 215 IS - 4 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_4_a1/ LA - en ID - SM_2024_215_4_a1 ER -
I. V. Baibulov; O. V. Sarafanov. The spectrum of the $C^*$-algebra of singular integral operators with semi-almost periodic coefficients. Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 464-493. http://geodesic.mathdoc.fr/item/SM_2024_215_4_a1/
[1] H. O. Cordes, “The algebra of singular integral operators in $R^n$”, J. Math. Mech., 14:6 (1965), 1007–1032 | MR | Zbl
[2] B. A. Plamenevskiĭ and V. N. Senichkin, “On $C^*$-algebras of singular integral operators with discontinuous coefficients on a complex contour. I”, Soviet Math. (Iz. VUZ), 28:1 (1984), 28–37 | MR | Zbl
[3] B. A. Plamenevskiĭ and V. N. Senichkin, “On $C^*$-algebras of singular integral operators with discontinuous coefficients on a complex contour. II”, Soviet Math. (Iz. VUZ), 28:4 (1984), 47–58 | MR | Zbl
[4] A. Böttcher, Yu. I. Karlovich and I. M. Spitkovsky, Convolution operators and factorization of almost periodic matrix functions, Oper. Theory Adv. Appl., 131, Birkhäuser Verlag, Basel, 2002, xii+462 pp. | DOI | MR | Zbl
[5] A. Böttcher, Yu. I. Karlovich and I. M. Spitkovsky, “The $C^*$-algebra of singular integral operators with semi-almost periodic coefficients”, J. Funct. Anal., 204:2 (2003), 445–484 | DOI | MR | Zbl
[6] B. A. Plamenevskiĭ and V. N. Senichkin, “Representations of $C^*$-algebras of pseudodifferential operators on piecewise smooth manifolds”, St. Petersburg Math. J., 13:6 (2002), 993–1032 | MR | Zbl
[7] B. Plamenevskii and O. Sarafanov, Solvable algebras of pseudodifferential operators, Pseudo Diff. Oper., 15, Birkhäuser/Springer, Cham, 2023, xii+241 pp. | DOI | MR | Zbl
[8] V. Kasatkin, “On the spectrum of the algebra of singular integral operators with discontinuities in symbols in momenta and coordinates”, J. Math. Sci. (N.Y.), 172:4 (2011), 477–531 | DOI | MR | Zbl
[9] S. Echterhoff and D. P. Williams, “Inducing primitive ideals”, Trans. Amer. Math. Soc., 360:11 (2008), 6113–6129 | DOI | MR | Zbl
[10] S. Echterhoff, “Crossed products and the Mackey–Rieffel–Green machine”, K-Theory for group $C^*$-algebras and semigroup $C^*$-algebras, Oberwolfach Semin., 47, Birkhäuser/Springer, Cham, 2017, 5–79 | DOI | MR | Zbl
[11] H. Bohr, Fastperiodische Funktionen, Ergeb. Math. Grenzgeb., 1, no. 5, Julius Springer, Berlin, 1932, iv+96 pp. | MR | Zbl
[12] B. M. Levitan and V. V. Zhikov, Almost periodic functions and differential equations, Cambridge Univ. Press, Cambridge–New York, 1982, xi+211 pp. | MR | MR | Zbl | Zbl
[13] I. B. Simonenko, “A new general method of investigating linear operator equations of singular integral equation type. I”, Izv. Akad. Nauk SSSR Ser. Mat., 29:3 (1965), 567–586 (Russian) | MR | Zbl
[14] I. B. Simonenko, “Convolution operators in cones”, Soviet Math. Dokl., 8 (1967), 1320–1323 | MR | Zbl
[15] R. G. Douglas, Banach algebra techniques in operator theory, Pure Appl. Math., 49, Academic Press, New York–London, 1972, xvi+216 pp. | MR | Zbl
[16] A. Dynin, “Multivariable Wiener–Hopf operators. I. Representations”, Integral Equations Operator Theory, 9:4 (1986), 537–556 | DOI | MR | Zbl
[17] D. P. Williams, Crossed products of $C^*$-algebras, Math. Surveys Monogr., 134, Amer. Math. Soc., Providence, RI, 2007, xvi+528 pp. | DOI | MR | Zbl
[18] A. Antonevich and A. Lebedev, Functional differential equations. I. $C^*$-theory, Pitman Monogr. Surveys Pure Appl. Math., 70, Longman Scientific Technical, Harlow, 1994, viii+504 pp. | MR | Zbl
[19] R. J. Archbold and J. S. Spielberg, “Topologically free actions and ideals in discrete $C^*$-dynamical systems”, Proc. Edinburgh Math. Soc. (2), 37:1 (1994), 119–124 | DOI | MR | Zbl
[20] J. Dixmier, Les $C^*$-algèbres et leurs représentations, Cahiers Sci., XXIX, 2ème éd., Gauthier-Villars Éditeur, Paris, 1969, xv+390 pp. | MR | Zbl
[21] B. Blackadar, Operator algebras. Theory of $C^*$-algebras and von Neumann algebras, Encyclopaedia Math. Sci., 122, Oper. Alg. Non-commut. Geom., III, Springer-Verlag, Berlin, 2006, xx+517 pp. | DOI | MR | Zbl
[22] A. Sierakowski, “The ideal structure of reduced crossed products”, Münster J. Math., 3:1 (2010), 237–261 | MR | Zbl
[23] S. Echterhoff and M. Laca, “The primitive ideal space of the $C^*$-algebra of the affine semigroup of algebraic integers”, Math. Proc. Cambridge Philos. Soc., 154:1 (2013), 119–126 | DOI | MR | Zbl
[24] P. Green, “The local structure of twisted covariance algebras”, Acta Math., 140:3–4 (1978), 191–250 | DOI | MR | Zbl
[25] S. Itoh, “Conditional expectations in $C^*$-crossed products”, Trans. Amer. Math. Soc., 267:2 (1981), 661–667 | DOI | MR | Zbl
[26] N. P. Brown and N. Ozawa, $C^*$-algebras and finite-dimensional approximations, Grad. Stud. Math., 88, Amer. Math. Soc., Providence, RI, 2008, xvi+509 pp. | DOI | MR | Zbl
[27] G. K. Pedersen, “Pullback and pushout constructions in $C^*$-algebra theory”, J. Funct. Anal., 167:2 (1999), 243–344 | DOI | MR | Zbl