Controllability of an approximately defined control system
Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 438-463 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We introduce the notion of controllability of a system of ordinary differential equations with respect to a prescribed function and present conditions that guarantee the controllability (with respect to this function) of both the original control system and all control systems close to it. Bibliography: 10 titles.
Keywords: control system, controllability, local controllability.
Mots-clés : perturbation
@article{SM_2024_215_4_a0,
     author = {E. R. Avakov and G. G. Magaril-Il'yaev},
     title = {Controllability of an approximately defined control system},
     journal = {Sbornik. Mathematics},
     pages = {438--463},
     year = {2024},
     volume = {215},
     number = {4},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_4_a0/}
}
TY  - JOUR
AU  - E. R. Avakov
AU  - G. G. Magaril-Il'yaev
TI  - Controllability of an approximately defined control system
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 438
EP  - 463
VL  - 215
IS  - 4
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_4_a0/
LA  - en
ID  - SM_2024_215_4_a0
ER  - 
%0 Journal Article
%A E. R. Avakov
%A G. G. Magaril-Il'yaev
%T Controllability of an approximately defined control system
%J Sbornik. Mathematics
%D 2024
%P 438-463
%V 215
%N 4
%U http://geodesic.mathdoc.fr/item/SM_2024_215_4_a0/
%G en
%F SM_2024_215_4_a0
E. R. Avakov; G. G. Magaril-Il'yaev. Controllability of an approximately defined control system. Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 438-463. http://geodesic.mathdoc.fr/item/SM_2024_215_4_a0/

[1] E. B. Lee and L. Markus, Foundations of optimal control theory, John Wiley Sons, Inc., New York–London–Sydney, 1967, x+576 pp. | MR | Zbl

[2] E. R. Avakov and G. G. Magaril-Il'yaev, “Controllability and second-order necessary conditions for optimality”, Sb. Math., 210:1 (2019), 1–23 | DOI | MR | Zbl

[3] E. R. Avakov and G. G. Magaril-Il'yaev, “Local controllability and optimality”, Sb. Math., 212:7 (2021), 887–920 | DOI | MR | Zbl

[4] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Intersci. Publ. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | Zbl

[5] H. J. Sussmann, “A general theorem on local controllability”, SIAM J. Control Opt., 25:1 (1987), 158–194 | DOI | MR | Zbl

[6] E. R. Avakov and G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Sb. Math., 211:6 (2020), 750–785 | DOI | MR | Zbl

[7] E. R. Avakov and G. G. Magaril-Il'yaev, “General implicit function theorem for close mappings”, Proc. Steklov Inst. Math., 315 (2021), 1–12 | MR | Zbl

[8] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl

[9] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex analysis: theory and applications, 5th augmented ed., Lenand, Moscow, 2020, 176 pp.; English transl. of 2nd ed., Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl

[10] V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal control, 2nd ed., Fizmatlit, Moscow, 2005, 384 pp.; English transl. of 1st ed., Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | Zbl