Mots-clés : perturbation
@article{SM_2024_215_4_a0,
author = {E. R. Avakov and G. G. Magaril-Il'yaev},
title = {Controllability of an approximately defined control system},
journal = {Sbornik. Mathematics},
pages = {438--463},
year = {2024},
volume = {215},
number = {4},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_4_a0/}
}
E. R. Avakov; G. G. Magaril-Il'yaev. Controllability of an approximately defined control system. Sbornik. Mathematics, Tome 215 (2024) no. 4, pp. 438-463. http://geodesic.mathdoc.fr/item/SM_2024_215_4_a0/
[1] E. B. Lee and L. Markus, Foundations of optimal control theory, John Wiley Sons, Inc., New York–London–Sydney, 1967, x+576 pp. | MR | Zbl
[2] E. R. Avakov and G. G. Magaril-Il'yaev, “Controllability and second-order necessary conditions for optimality”, Sb. Math., 210:1 (2019), 1–23 | DOI | MR | Zbl
[3] E. R. Avakov and G. G. Magaril-Il'yaev, “Local controllability and optimality”, Sb. Math., 212:7 (2021), 887–920 | DOI | MR | Zbl
[4] F. H. Clarke, Optimization and nonsmooth analysis, Canad. Math. Soc. Ser. Monogr. Adv. Texts, Wiley-Intersci. Publ. John Wiley Sons, Inc., New York, 1983, xiii+308 pp. | MR | Zbl
[5] H. J. Sussmann, “A general theorem on local controllability”, SIAM J. Control Opt., 25:1 (1987), 158–194 | DOI | MR | Zbl
[6] E. R. Avakov and G. G. Magaril-Il'yaev, “Local infimum and a family of maximum principles in optimal control”, Sb. Math., 211:6 (2020), 750–785 | DOI | MR | Zbl
[7] E. R. Avakov and G. G. Magaril-Il'yaev, “General implicit function theorem for close mappings”, Proc. Steklov Inst. Math., 315 (2021), 1–12 | MR | Zbl
[8] R. E. Edwards, Functional analysis. Theory and applications, Holt, Rinehart and Winston, New York–Toronto–London, 1965, xiii+781 pp. | MR | Zbl
[9] G. G. Magaril-Il'yaev and V. M. Tikhomirov, Convex analysis: theory and applications, 5th augmented ed., Lenand, Moscow, 2020, 176 pp.; English transl. of 2nd ed., Transl. Math. Monogr., 222, Amer. Math. Soc., Providence, RI, 2003, viii+183 pp. | MR | Zbl
[10] V. M. Alekseev, V. M. Tikhomirov and S. V. Fomin, Optimal control, 2nd ed., Fizmatlit, Moscow, 2005, 384 pp.; English transl. of 1st ed., Contemp. Soviet Math., Consultants Bureau, New York, 1987, xiv+309 pp. | DOI | MR | Zbl