Mots-clés : tangent cone
@article{SM_2024_215_3_a6,
author = {A. Yu. Plakhov},
title = {Local structure of convex surfaces},
journal = {Sbornik. Mathematics},
pages = {401--437},
year = {2024},
volume = {215},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a6/}
}
A. Yu. Plakhov. Local structure of convex surfaces. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 401-437. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a6/
[1] A. D. Aleksandrov, “On the theory of mixed volumes of convex bodies. III. Extending two theorems of Minkowski on convex polytopes to arbitrary convex bodies”, Mat. Sb., 3(45):1 (1938), 27–46 (Russian) | Zbl
[2] V. A. Alexandrov, N. V. Kopteva and S. S. Kutateladze, “Blaschke addition and convex polyhedra”, Tr. Semin. Vektor. Tenzor. Anal., 26, Moscow State University Publishing House, Moscow, 2005, 8–30 (Russian) | Zbl
[3] I. Newton, Philosophiae naturalis principia mathematica, Streater, London, 1687, 510 pp. | MR | Zbl
[4] G. Buttazzo and B. Kawohl, “On Newton's problem of minimal resistance”, Math. Intelligencer, 15:4 (1993), 7–12 | DOI | MR | Zbl
[5] F. Brock, V. Ferone and B. Kawohl, “A symmetry problem in the calculus of variations”, Calc. Var. Partial Differential Equations, 4:6 (1996), 593–599 | DOI | MR | Zbl
[6] G. Buttazzo, V. Ferone and B. Kawohl, “Minimum problems over sets of concave functions and related questions”, Math. Nachr., 173 (1995), 71–89 | DOI | MR | Zbl
[7] G. Wachsmuth, “The numerical solution of Newton's problem of least resistance”, Math. Program., 147:1–2(A) (2014), 331–350 | DOI | MR | Zbl
[8] A. Plakhov, “A note on Newton's problem of minimal resistance for convex bodies”, Calc. Var. Partial Differential Equations, 59:5 (2020), 167, 13 pp. | DOI | MR | Zbl
[9] A. Plakhov, “A solution to Newton's least resistance problem is uniquely defined by its singular set”, Calc. Var. Partial Differential Equations, 61:5 (2022), 189, 37 pp. | DOI | MR | Zbl
[10] A. Plakhov, “On generalized Newton's aerodynamic problem”, Trans. Moscow Math. Soc., 82 (2021), 183–191 | DOI | MR | Zbl
[11] A. V. Pogorelov, Extrinsic geometry of convex surfaces, Transl. Math. Monogr., 35, Amer. Math. Soc., Providence, RI, 1973, vi+669 pp. | DOI | Zbl
[12] A. Plakhov, “Local structure of convex surfaces near regular and conical points”, Axioms, 11:8 (2022), 356, 10 pp. | DOI
[13] R. Schneider, Convex bodies: the Brunn–Minkowski theory, Encyclopedia Math. Appl., 44, Cambridge Univ. Press, Cambridge, 1993, xiv+490 pp. | DOI | MR | Zbl