Recovery of analytic functions that is exact on subspaces of entire functions
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 383-400 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A family of optimal recovery methods is developed for the recovery of analytic functions in a strip and their derivatives from inaccurately specified trace of the Fourier transforms of these functions on the real axis. In addition, the methods must be exact on some subspaces of entire functions. Bibliography: 12 titles.
Keywords: Hardy classes, optimal recovery, entire functions.
Mots-clés : Fourier transform
@article{SM_2024_215_3_a5,
     author = {K. Yu. Osipenko},
     title = {Recovery of analytic functions that is exact on subspaces of entire functions},
     journal = {Sbornik. Mathematics},
     pages = {383--400},
     year = {2024},
     volume = {215},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a5/}
}
TY  - JOUR
AU  - K. Yu. Osipenko
TI  - Recovery of analytic functions that is exact on subspaces of entire functions
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 383
EP  - 400
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a5/
LA  - en
ID  - SM_2024_215_3_a5
ER  - 
%0 Journal Article
%A K. Yu. Osipenko
%T Recovery of analytic functions that is exact on subspaces of entire functions
%J Sbornik. Mathematics
%D 2024
%P 383-400
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a5/
%G en
%F SM_2024_215_3_a5
K. Yu. Osipenko. Recovery of analytic functions that is exact on subspaces of entire functions. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 383-400. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a5/

[1] S. M. Nikol'skii, Quadrature formulae, 4th ed., Nauka, Moscow, 1988, 256 pp. ; Spanish translation of the 3d ed., S. Nikolski, Fórmulas de cuadratura, Editorial Mir, Moscow, 1990, 293 pp. | MR | Zbl | MR | Zbl

[2] S. M. Nikol'skii, “On estimates for approximations by quadrature formulae”, Uspekhi Mat. Nauk, 5:2(36) (1950), 165–177 (Russian) | MR | Zbl

[3] G. G. Magaril-Il'yaev and K. Yu. Osipenko, “Exactness and optimality of methods for recovering functions from their spectrum”, Proc. Steklov Inst. Math., 293 (2016), 194–208 | DOI | MR | Zbl

[4] E. A. Balova and K. Yu. Osipenko, “Optimal recovery methods for solutions of the Dirichlet problem that are exact on subspaces of spherical harmonics”, Math. Notes, 104:6 (2018), 781–788 | DOI | MR | Zbl

[5] S. A. Unuchek, “Optimal recovery methods exact on trigonometric polynomials for the solution of the heat equation”, Math. Notes, 113:1 (2023), 116–128 | DOI | MR | Zbl

[6] C. A. Micchelli and T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory (Freudenstadt 1976), The IBM Research Symposia Series, Plenum, New York, 1977, 1–54 | DOI | MR | Zbl

[7] J. F. Traub and H. Woźniakowski, A general theory of optimal algorithms, ACM Monogr. Ser., Academic Press, Inc., New York–London, 1980, xiv+341 pp. | MR | Zbl

[8] L. Plaskota, Noisy information and computational complexity, Cambridge Univ. Press, Cambridge, 1996, xii+308 pp. | DOI | MR | Zbl

[9] K. Yu. Osipenko, Optimal recovery of analytic functions, Nova Science Publ., Inc., Huntington, NY, 2000, 220 pp.

[10] K. Yu. Osipenko, Introduction to optimal recovery theory, Lan', St Petersburg, 2022, 388 pp. (Russian)

[11] K. Yu. Osipenko, “The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces”, Sb. Math., 197:3 (2006), 315–334 | DOI | MR | Zbl

[12] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl