Mots-clés : Fourier transform
@article{SM_2024_215_3_a5,
author = {K. Yu. Osipenko},
title = {Recovery of analytic functions that is exact on subspaces of entire functions},
journal = {Sbornik. Mathematics},
pages = {383--400},
year = {2024},
volume = {215},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a5/}
}
K. Yu. Osipenko. Recovery of analytic functions that is exact on subspaces of entire functions. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 383-400. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a5/
[1] S. M. Nikol'skii, Quadrature formulae, 4th ed., Nauka, Moscow, 1988, 256 pp. ; Spanish translation of the 3d ed., S. Nikolski, Fórmulas de cuadratura, Editorial Mir, Moscow, 1990, 293 pp. | MR | Zbl | MR | Zbl
[2] S. M. Nikol'skii, “On estimates for approximations by quadrature formulae”, Uspekhi Mat. Nauk, 5:2(36) (1950), 165–177 (Russian) | MR | Zbl
[3] G. G. Magaril-Il'yaev and K. Yu. Osipenko, “Exactness and optimality of methods for recovering functions from their spectrum”, Proc. Steklov Inst. Math., 293 (2016), 194–208 | DOI | MR | Zbl
[4] E. A. Balova and K. Yu. Osipenko, “Optimal recovery methods for solutions of the Dirichlet problem that are exact on subspaces of spherical harmonics”, Math. Notes, 104:6 (2018), 781–788 | DOI | MR | Zbl
[5] S. A. Unuchek, “Optimal recovery methods exact on trigonometric polynomials for the solution of the heat equation”, Math. Notes, 113:1 (2023), 116–128 | DOI | MR | Zbl
[6] C. A. Micchelli and T. J. Rivlin, “A survey of optimal recovery”, Optimal estimation in approximation theory (Freudenstadt 1976), The IBM Research Symposia Series, Plenum, New York, 1977, 1–54 | DOI | MR | Zbl
[7] J. F. Traub and H. Woźniakowski, A general theory of optimal algorithms, ACM Monogr. Ser., Academic Press, Inc., New York–London, 1980, xiv+341 pp. | MR | Zbl
[8] L. Plaskota, Noisy information and computational complexity, Cambridge Univ. Press, Cambridge, 1996, xii+308 pp. | DOI | MR | Zbl
[9] K. Yu. Osipenko, Optimal recovery of analytic functions, Nova Science Publ., Inc., Huntington, NY, 2000, 220 pp.
[10] K. Yu. Osipenko, Introduction to optimal recovery theory, Lan', St Petersburg, 2022, 388 pp. (Russian)
[11] K. Yu. Osipenko, “The Hardy–Littlewood–Pólya inequality for analytic functions in Hardy–Sobolev spaces”, Sb. Math., 197:3 (2006), 315–334 | DOI | MR | Zbl
[12] E. M. Stein and G. Weiss, Introduction to Fourier analysis on Euclidean spaces, Princeton Math. Ser., 32, Princeton Univ. Press, Princeton, NJ, 1971, x+297 pp. | MR | Zbl