@article{SM_2024_215_3_a4,
author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov and S. N. Ushakov},
title = {Localization of the window functions of dual and tight {Gabor} frames generated by the {Gaussian} function},
journal = {Sbornik. Mathematics},
pages = {364--382},
year = {2024},
volume = {215},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/}
}
TY - JOUR AU - E. A. Kiselev AU - L. A. Minin AU - I. Ya. Novikov AU - S. N. Ushakov TI - Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function JO - Sbornik. Mathematics PY - 2024 SP - 364 EP - 382 VL - 215 IS - 3 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/ LA - en ID - SM_2024_215_3_a4 ER -
%0 Journal Article %A E. A. Kiselev %A L. A. Minin %A I. Ya. Novikov %A S. N. Ushakov %T Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function %J Sbornik. Mathematics %D 2024 %P 364-382 %V 215 %N 3 %U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/ %G en %F SM_2024_215_3_a4
E. A. Kiselev; L. A. Minin; I. Ya. Novikov; S. N. Ushakov. Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 364-382. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/
[1] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Grundlehren Math. Wiss., 38, J. Springer, Berlin, 1932, 262 pp. | MR | Zbl
[2] A. M. Perelomov, “On the completeness of a system of coherent states”, Theoret. and Math. Phys., 6:2 (1971), 156–164 | DOI | MR
[3] V. Bargmann, P. Butera, L. Girardello and J. R. Klauder, “On the completeness of the coherent states”, Rep. Math. Phys., 2:4 (1971), 221–228 | DOI | MR
[4] H. Bacry, A. Grossmann and J. Zak, “Geometry of generalized coherent states”, Group theoretical methods in physics (Nijmegen 1975), Lecture Notes in Phys., 50, Springer-Verlag, Berlin–New York, 1976, 249–268 | DOI | MR | Zbl
[5] D. Gabor, “Theory of communication. Part 1. The analysis of information”, J. Inst. Elec. Engrs. Part III, 93:26 (1946), 429–441 | DOI
[6] R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. (2), 131:6 (1963), 2766–2788 | DOI | MR | Zbl
[7] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, PA, 1992, xx+357 pp. | DOI | MR | Zbl
[8] I. Daubechies and A. Grossmann, “Frames in the Bargmann space of entire functions”, Comm. Pure Appl. Math., 41:2 (1988), 151–164 | DOI | MR | Zbl
[9] Yu. I. Lyubarskii, “Frames in the Bargmann space of entire functions”, Entire and subharmonic functions, Adv. Soviet Math., 11, Amer. Math. Soc., Providence, RI, 1992, 167–180 | DOI | MR | Zbl
[10] I. Daubechies, H. J. Landau and Z. Landau, “Gabor time-frequency lattices and the Wexler–Raz identity”, J. Fourier Anal. Appl., 1:4 (1995), 437–478 | DOI | MR | Zbl
[11] J. Wexler and S. Raz, “Discrete Gabor expansions”, Signal Process., 21:3 (1990), 207–220 | DOI
[12] H. G. Feichtinger, A. Grybos and D. M. Onchis, “Approximate dual Gabor atoms via the adjoint lattice method”, Adv. Comput. Math., 40:3 (2014), 651–665 | DOI | MR | Zbl
[13] H. G. Feichtinger, F. Luef and T. Werther, “A guided tour from linear algebra to the foundations of Gabor analysis”, Gabor and wavelet frames, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 10, World Sci. Publ., Hackensack, NJ, 2007, 1–49 | DOI | MR | Zbl
[14] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd ed., Birkhäuser/Springer, Cham, 2016, xxv+704 pp. | DOI | MR | Zbl
[15] A. J. E. M. Janssen, “Duality and biorthogonality for Weyl–Heisenberg frames”, J. Fourier Anal. Appl., 1:4 (1995), 403–436 | DOI | MR | Zbl
[16] A. J. E. M. Janssen, “Some Weyl–Heisenberg frame bound calculations”, Indag. Math. (N.S.), 7:2 (1996), 165–183 | DOI | MR | Zbl
[17] A. J. E. M. Janssen and T. Strohmer, “Characterization and computation of canonical tight windows for Gabor frames”, J. Fourier Anal. Appl., 8:1 (2002), 1–28 | DOI | MR | Zbl
[18] A. J. E. M. Janssen, “On generating tight Gabor frames at critical density”, J. Fourier Anal. Appl., 9:2 (2003), 175–214 | DOI | MR | Zbl
[19] K. Gröchenig, Foundations of time-frequency analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2001, xvi+359 pp. | DOI | MR | Zbl
[20] Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs”, Séminaire Bourbaki, v. 1985/1986, Astérisque, 145-146, Soc. Math. France, Paris, 1987, Exp. No. 662, 209–223 | MR | Zbl
[21] J. Bourgain, “A remark on the uncertainty principle for Hilbertian basis”, J. Funct. Anal., 79:1 (1988), 136–143 | DOI | MR | Zbl
[22] I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | DOI | MR | Zbl
[23] E. A. Lebedeva, “Minimization of the uncertainty constant of the family of Meyer wavelets”, Math. Notes, 81:4 (2007), 489–495 | DOI | MR | Zbl
[24] E. A. Lebedeva and V. Yu. Protasov, “Meyer wavelets with least uncertainty constant”, Math. Notes, 84:5 (2008), 680–687 | DOI | MR | Zbl
[25] H. Bölcskei, “A necessary and sufficient condition for dual Weyl–Heisenberg frames to be compactly supported”, J. Fourier Anal. Appl., 5:5 (1999), 409–419 | DOI | MR | Zbl
[26] H. Bölcskei and J. E. M. Janssen, “Gabor frames, unimodularity, and window decay”, J. Fourier Anal. Appl., 6:3 (2000), 255–276 | DOI | MR | Zbl
[27] T. Strohmer, “Approximation of dual Gabor frames, window decay, and wireless communications”, Appl. Comput. Harmon. Anal., 11:2 (2001), 243–262 | DOI | MR | Zbl
[28] T. Strohmer and S. Beaver, “Optimal OFDM design for time-frequency dispersive channels”, IEEE Trans. Commun., 51:7 (2003), 1111–1122 | DOI
[29] V. Maz'ya and G. Schmidt, “On approximate approximations using Gaussian kernels”, IMA J. Numer. Anal., 16:1 (1996), 13–29 | DOI | MR | Zbl
[30] V. Maz'ya and G. Schmidt, Approximate approximations, Math. Surveys Monogr., 141, Amer. Math. Soc., Providence, RI, 2007, xiv+349 pp. | DOI | MR | Zbl
[31] L. A. Minin, I. Ya. Novikov and S. N. Ushakov, “On expansion with respect to Gabor frames generated by the Gaussian function”, Math. Notes, 100:6 (2016), 890–892 | DOI | MR | Zbl
[32] E. A. Kiselev, L. A. Minin and I. Ya. Novikov, “Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions”, Sb. Math., 207:8 (2016), 1127–1141 | DOI | MR | Zbl
[33] Ch. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Inc., Boston, MA, 1992, x+264 pp. | MR | Zbl
[34] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Part II, 4th ed., Cambridge Univ. Press, Cambridge, 1927, 233–578 | DOI | MR | Zbl
[35] M. V. Zhuravlev, E. A. Kiselev, L. A. Minin and S. M. Sitnik, “Jacobi theta-functions and systems of integral shifts of Gaussian functions”, J. Math. Sci. (N.Y.), 173:2 (2011), 231–241 | DOI | MR | Zbl
[36] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | Zbl
[37] H. G. Feichtinger and G. Zimmermann, “A Banach space of test functions for Gabor analysis”, Gabor analysis and algorithms. Theory and applications, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 1998, 123–170 | DOI | MR | Zbl
[38] E. A. Kiselev, L. A. Minin and I. Ya. Novikov, “Limit properties of systems of integer translates and functions generating tight Gabor frames”, Math. Notes, 106:1 (2019), 71–80 | DOI | MR | Zbl