Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 364-382

Voir la notice de l'article provenant de la source Math-Net.Ru

Gabor frames generated by the Gaussian function are considered. The localization of the window functions of dual frames is estimated in terms of the uncertainty constants, it its dependence on the relation between the parameters of the time-frequency window and the degree of overcompleteness. It is shown that localization worsens rapidly with the increasing disproportion in the parameters of the window. On the other hand, the higher the system of functions forming the frame is overdetermined, the better the window function of the dual frame is localized. For a tight frame the localization of the window function with the same set of parameters is much better than that for the dual frame. This problem is closely related to the problem of interpolation by we have uniform shifts of the Gaussian function. Both the nodal interpolation function and the window function of the dual frame are constructed from the same coefficients. These coefficients play an important role also in the derivation of formulae for the uncertainty constants. This is why their properties related to sign alternation and the monotonicity of decrease of the absolute value are considered in the paper. Bibliography: 38 titles.
Keywords: dual frame, Gabor frame, tight frame, time-frequency localization, uncertainty constant.
@article{SM_2024_215_3_a4,
     author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov and S. N. Ushakov},
     title = {Localization of the window functions of dual and tight {Gabor} frames generated by the {Gaussian} function},
     journal = {Sbornik. Mathematics},
     pages = {364--382},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/}
}
TY  - JOUR
AU  - E. A. Kiselev
AU  - L. A. Minin
AU  - I. Ya. Novikov
AU  - S. N. Ushakov
TI  - Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 364
EP  - 382
VL  - 215
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/
LA  - en
ID  - SM_2024_215_3_a4
ER  - 
%0 Journal Article
%A E. A. Kiselev
%A L. A. Minin
%A I. Ya. Novikov
%A S. N. Ushakov
%T Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function
%J Sbornik. Mathematics
%D 2024
%P 364-382
%V 215
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/
%G en
%F SM_2024_215_3_a4
E. A. Kiselev; L. A. Minin; I. Ya. Novikov; S. N. Ushakov. Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 364-382. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/