Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 364-382 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Gabor frames generated by the Gaussian function are considered. The localization of the window functions of dual frames is estimated in terms of the uncertainty constants, it its dependence on the relation between the parameters of the time-frequency window and the degree of overcompleteness. It is shown that localization worsens rapidly with the increasing disproportion in the parameters of the window. On the other hand, the higher the system of functions forming the frame is overdetermined, the better the window function of the dual frame is localized. For a tight frame the localization of the window function with the same set of parameters is much better than that for the dual frame. This problem is closely related to the problem of interpolation by we have uniform shifts of the Gaussian function. Both the nodal interpolation function and the window function of the dual frame are constructed from the same coefficients. These coefficients play an important role also in the derivation of formulae for the uncertainty constants. This is why their properties related to sign alternation and the monotonicity of decrease of the absolute value are considered in the paper. Bibliography: 38 titles.
Keywords: dual frame, Gabor frame, tight frame, time-frequency localization, uncertainty constant.
@article{SM_2024_215_3_a4,
     author = {E. A. Kiselev and L. A. Minin and I. Ya. Novikov and S. N. Ushakov},
     title = {Localization of the window functions of dual and tight {Gabor} frames generated by the {Gaussian} function},
     journal = {Sbornik. Mathematics},
     pages = {364--382},
     year = {2024},
     volume = {215},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/}
}
TY  - JOUR
AU  - E. A. Kiselev
AU  - L. A. Minin
AU  - I. Ya. Novikov
AU  - S. N. Ushakov
TI  - Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 364
EP  - 382
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/
LA  - en
ID  - SM_2024_215_3_a4
ER  - 
%0 Journal Article
%A E. A. Kiselev
%A L. A. Minin
%A I. Ya. Novikov
%A S. N. Ushakov
%T Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function
%J Sbornik. Mathematics
%D 2024
%P 364-382
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/
%G en
%F SM_2024_215_3_a4
E. A. Kiselev; L. A. Minin; I. Ya. Novikov; S. N. Ushakov. Localization of the window functions of dual and tight Gabor frames generated by the Gaussian function. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 364-382. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a4/

[1] J. von Neumann, Mathematische Grundlagen der Quantenmechanik, Grundlehren Math. Wiss., 38, J. Springer, Berlin, 1932, 262 pp. | MR | Zbl

[2] A. M. Perelomov, “On the completeness of a system of coherent states”, Theoret. and Math. Phys., 6:2 (1971), 156–164 | DOI | MR

[3] V. Bargmann, P. Butera, L. Girardello and J. R. Klauder, “On the completeness of the coherent states”, Rep. Math. Phys., 2:4 (1971), 221–228 | DOI | MR

[4] H. Bacry, A. Grossmann and J. Zak, “Geometry of generalized coherent states”, Group theoretical methods in physics (Nijmegen 1975), Lecture Notes in Phys., 50, Springer-Verlag, Berlin–New York, 1976, 249–268 | DOI | MR | Zbl

[5] D. Gabor, “Theory of communication. Part 1. The analysis of information”, J. Inst. Elec. Engrs. Part III, 93:26 (1946), 429–441 | DOI

[6] R. J. Glauber, “Coherent and incoherent states of the radiation field”, Phys. Rev. (2), 131:6 (1963), 2766–2788 | DOI | MR | Zbl

[7] I. Daubechies, Ten lectures on wavelets, CBMS-NSF Regional Conf. Ser. in Appl. Math., 61, SIAM, Philadelphia, PA, 1992, xx+357 pp. | DOI | MR | Zbl

[8] I. Daubechies and A. Grossmann, “Frames in the Bargmann space of entire functions”, Comm. Pure Appl. Math., 41:2 (1988), 151–164 | DOI | MR | Zbl

[9] Yu. I. Lyubarskii, “Frames in the Bargmann space of entire functions”, Entire and subharmonic functions, Adv. Soviet Math., 11, Amer. Math. Soc., Providence, RI, 1992, 167–180 | DOI | MR | Zbl

[10] I. Daubechies, H. J. Landau and Z. Landau, “Gabor time-frequency lattices and the Wexler–Raz identity”, J. Fourier Anal. Appl., 1:4 (1995), 437–478 | DOI | MR | Zbl

[11] J. Wexler and S. Raz, “Discrete Gabor expansions”, Signal Process., 21:3 (1990), 207–220 | DOI

[12] H. G. Feichtinger, A. Grybos and D. M. Onchis, “Approximate dual Gabor atoms via the adjoint lattice method”, Adv. Comput. Math., 40:3 (2014), 651–665 | DOI | MR | Zbl

[13] H. G. Feichtinger, F. Luef and T. Werther, “A guided tour from linear algebra to the foundations of Gabor analysis”, Gabor and wavelet frames, Lect. Notes Ser. Inst. Math. Sci. Natl. Univ. Singap., 10, World Sci. Publ., Hackensack, NJ, 2007, 1–49 | DOI | MR | Zbl

[14] O. Christensen, An introduction to frames and Riesz bases, Appl. Numer. Harmon. Anal., 2nd ed., Birkhäuser/Springer, Cham, 2016, xxv+704 pp. | DOI | MR | Zbl

[15] A. J. E. M. Janssen, “Duality and biorthogonality for Weyl–Heisenberg frames”, J. Fourier Anal. Appl., 1:4 (1995), 403–436 | DOI | MR | Zbl

[16] A. J. E. M. Janssen, “Some Weyl–Heisenberg frame bound calculations”, Indag. Math. (N.S.), 7:2 (1996), 165–183 | DOI | MR | Zbl

[17] A. J. E. M. Janssen and T. Strohmer, “Characterization and computation of canonical tight windows for Gabor frames”, J. Fourier Anal. Appl., 8:1 (2002), 1–28 | DOI | MR | Zbl

[18] A. J. E. M. Janssen, “On generating tight Gabor frames at critical density”, J. Fourier Anal. Appl., 9:2 (2003), 175–214 | DOI | MR | Zbl

[19] K. Gröchenig, Foundations of time-frequency analysis, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 2001, xvi+359 pp. | DOI | MR | Zbl

[20] Y. Meyer, “Principe d'incertitude, bases hilbertiennes et algèbres d'opérateurs”, Séminaire Bourbaki, v. 1985/1986, Astérisque, 145-146, Soc. Math. France, Paris, 1987, Exp. No. 662, 209–223 | MR | Zbl

[21] J. Bourgain, “A remark on the uncertainty principle for Hilbertian basis”, J. Funct. Anal., 79:1 (1988), 136–143 | DOI | MR | Zbl

[22] I. Ya. Novikov, V. Yu. Protasov and M. A. Skopina, Wavelet theory, Transl. Math. Monogr., 239, Amer. Math. Soc., Providence, RI, 2011, xiv+506 pp. | DOI | MR | Zbl

[23] E. A. Lebedeva, “Minimization of the uncertainty constant of the family of Meyer wavelets”, Math. Notes, 81:4 (2007), 489–495 | DOI | MR | Zbl

[24] E. A. Lebedeva and V. Yu. Protasov, “Meyer wavelets with least uncertainty constant”, Math. Notes, 84:5 (2008), 680–687 | DOI | MR | Zbl

[25] H. Bölcskei, “A necessary and sufficient condition for dual Weyl–Heisenberg frames to be compactly supported”, J. Fourier Anal. Appl., 5:5 (1999), 409–419 | DOI | MR | Zbl

[26] H. Bölcskei and J. E. M. Janssen, “Gabor frames, unimodularity, and window decay”, J. Fourier Anal. Appl., 6:3 (2000), 255–276 | DOI | MR | Zbl

[27] T. Strohmer, “Approximation of dual Gabor frames, window decay, and wireless communications”, Appl. Comput. Harmon. Anal., 11:2 (2001), 243–262 | DOI | MR | Zbl

[28] T. Strohmer and S. Beaver, “Optimal OFDM design for time-frequency dispersive channels”, IEEE Trans. Commun., 51:7 (2003), 1111–1122 | DOI

[29] V. Maz'ya and G. Schmidt, “On approximate approximations using Gaussian kernels”, IMA J. Numer. Anal., 16:1 (1996), 13–29 | DOI | MR | Zbl

[30] V. Maz'ya and G. Schmidt, Approximate approximations, Math. Surveys Monogr., 141, Amer. Math. Soc., Providence, RI, 2007, xiv+349 pp. | DOI | MR | Zbl

[31] L. A. Minin, I. Ya. Novikov and S. N. Ushakov, “On expansion with respect to Gabor frames generated by the Gaussian function”, Math. Notes, 100:6 (2016), 890–892 | DOI | MR | Zbl

[32] E. A. Kiselev, L. A. Minin and I. Ya. Novikov, “Calculation of the Riesz constants and orthogonalization for incomplete systems of coherent states by means of theta functions”, Sb. Math., 207:8 (2016), 1127–1141 | DOI | MR | Zbl

[33] Ch. K. Chui, An introduction to wavelets, Wavelet Anal. Appl., 1, Academic Press, Inc., Boston, MA, 1992, x+264 pp. | MR | Zbl

[34] E. T. Whittaker and G. N. Watson, A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions, Part II, 4th ed., Cambridge Univ. Press, Cambridge, 1927, 233–578 | DOI | MR | Zbl

[35] M. V. Zhuravlev, E. A. Kiselev, L. A. Minin and S. M. Sitnik, “Jacobi theta-functions and systems of integral shifts of Gaussian functions”, J. Math. Sci. (N.Y.), 173:2 (2011), 231–241 | DOI | MR | Zbl

[36] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book, The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | Zbl

[37] H. G. Feichtinger and G. Zimmermann, “A Banach space of test functions for Gabor analysis”, Gabor analysis and algorithms. Theory and applications, Appl. Numer. Harmon. Anal., Birkhäuser Boston, Inc., Boston, MA, 1998, 123–170 | DOI | MR | Zbl

[38] E. A. Kiselev, L. A. Minin and I. Ya. Novikov, “Limit properties of systems of integer translates and functions generating tight Gabor frames”, Math. Notes, 106:1 (2019), 71–80 | DOI | MR | Zbl