@article{SM_2024_215_3_a3,
author = {B. Ya. Kazarnovskii},
title = {Distribution of zeros of functions with exponential growth},
journal = {Sbornik. Mathematics},
pages = {355--363},
year = {2024},
volume = {215},
number = {3},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a3/}
}
B. Ya. Kazarnovskii. Distribution of zeros of functions with exponential growth. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a3/
[1] P. Lelong and L. Gruman, Entire functions of several complex variables, Grundlehren Math. Wiss., 282, Springer-Verlag, Berlin, 1986, xii+270 pp. | DOI | MR | Zbl
[2] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, x+208 pp. | MR | Zbl
[3] L. Hörmander, Linear partial differential operators, Grundlehren Math. Wiss., 116, Academic Press, Inc., New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, vii+287 pp. | MR | Zbl
[4] B. Ya. Kazarnovskij, “On the zeros of exponential sums”, Soviet Math. Dokl., 23 (1981), 347–351 | MR | Zbl
[5] M. Passare and H. Rullgård, “Amoebas, Monge–Ampère measures, and triangulations of the Newton polytope”, Duke Math. J., 121:3 (2004), 481–507 | DOI | MR | Zbl
[6] S. Alesker, “Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations”, J. Differential Geom., 63:1 (2003), 63–95 | DOI | MR | Zbl
[7] B. Ya. Kazarnovskii, “On the action of the complex Monge–Ampère operator on piecewise linear functions”, Funct. Anal. Appl., 48:1 (2014), 15–23 | DOI | MR | Zbl
[8] B. Ya. Kazarnovskii, “Newton polyhedra and zeros of systems of exponential sums”, Funct. Anal. Appl., 18:4 (1984), 299–307 | DOI | MR | Zbl
[9] B. V. Shabat, Introduction to complex analysis, Part II. Functions of several variables, Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | MR | Zbl
[10] T. Shifrin, “The kinematic formula in complex integral geometry”, Trans. Amer. Math. Soc., 264:2 (1981), 255–293 | DOI | MR | Zbl
[11] E. Bedford and B. A. Taylor, “The Dirichlet problem for a complex Monge–Ampère equation”, Invent. Math., 37:2 (1976), 1–44 | DOI | MR | Zbl