Distribution of zeros of functions with exponential growth
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 355-363 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For systems of equations with an infinite number of roots one can sometimes establish results of the type of the Kushnirenko–Bernstein–Khovanskii theorem by replacing the calculation of the number of the roots by the calculation of the asymptotic density of these roots. We consider systems of entire functions with exponential growth in $\mathbb C^n$ and calculate the asymptotic behaviour of the averaged distribution of their zeros in terms of the geometry of convex bodies in a complex vector space. Bibliography: 11 titles.
Keywords: Kushnirenko–Bernstein–Khovanskii theorem, Newton polytopes, zeros of holomorphic functions, exponential sums.
@article{SM_2024_215_3_a3,
     author = {B. Ya. Kazarnovskii},
     title = {Distribution of zeros of functions with exponential growth},
     journal = {Sbornik. Mathematics},
     pages = {355--363},
     year = {2024},
     volume = {215},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a3/}
}
TY  - JOUR
AU  - B. Ya. Kazarnovskii
TI  - Distribution of zeros of functions with exponential growth
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 355
EP  - 363
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a3/
LA  - en
ID  - SM_2024_215_3_a3
ER  - 
%0 Journal Article
%A B. Ya. Kazarnovskii
%T Distribution of zeros of functions with exponential growth
%J Sbornik. Mathematics
%D 2024
%P 355-363
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a3/
%G en
%F SM_2024_215_3_a3
B. Ya. Kazarnovskii. Distribution of zeros of functions with exponential growth. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 355-363. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a3/

[1] P. Lelong and L. Gruman, Entire functions of several complex variables, Grundlehren Math. Wiss., 282, Springer-Verlag, Berlin, 1986, xii+270 pp. | DOI | MR | Zbl

[2] L. Hörmander, An introduction to complex analysis in several variables, D. Van Nostrand Co., Inc., Princeton, NJ–Toronto, ON–London, 1966, x+208 pp. | MR | Zbl

[3] L. Hörmander, Linear partial differential operators, Grundlehren Math. Wiss., 116, Academic Press, Inc., New York; Springer-Verlag, Berlin–Göttingen–Heidelberg, 1963, vii+287 pp. | MR | Zbl

[4] B. Ya. Kazarnovskij, “On the zeros of exponential sums”, Soviet Math. Dokl., 23 (1981), 347–351 | MR | Zbl

[5] M. Passare and H. Rullgård, “Amoebas, Monge–Ampère measures, and triangulations of the Newton polytope”, Duke Math. J., 121:3 (2004), 481–507 | DOI | MR | Zbl

[6] S. Alesker, “Hard Lefschetz theorem for valuations, complex integral geometry, and unitarily invariant valuations”, J. Differential Geom., 63:1 (2003), 63–95 | DOI | MR | Zbl

[7] B. Ya. Kazarnovskii, “On the action of the complex Monge–Ampère operator on piecewise linear functions”, Funct. Anal. Appl., 48:1 (2014), 15–23 | DOI | MR | Zbl

[8] B. Ya. Kazarnovskii, “Newton polyhedra and zeros of systems of exponential sums”, Funct. Anal. Appl., 18:4 (1984), 299–307 | DOI | MR | Zbl

[9] B. V. Shabat, Introduction to complex analysis, Part II. Functions of several variables, Transl. Math. Monogr., 110, Amer. Math. Soc., Providence, RI, 1992, x+371 pp. | MR | Zbl

[10] T. Shifrin, “The kinematic formula in complex integral geometry”, Trans. Amer. Math. Soc., 264:2 (1981), 255–293 | DOI | MR | Zbl

[11] E. Bedford and B. A. Taylor, “The Dirichlet problem for a complex Monge–Ampère equation”, Invent. Math., 37:2 (1976), 1–44 | DOI | MR | Zbl