On the quantified version of the Belnap--Dunn modal logic
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 323-354

Voir la notice de l'article provenant de la source Math-Net.Ru

We develop a quantified version of the propositional modal logic $\mathsf{BK}$ from an article by Odintsov and Wansing, which is based on the (non-modal) Belnap–Dunn system; we denote this version by $\mathsf{QBK}$. First, by using the canonical model method we prove that $\mathsf{QBK}$, as well as some important extensions of it, is strongly complete with respect to a suitable possible world semantics. Then we define translations (in the spirit of Gödel–McKinsey–Tarski) that faithfully embed the quantified versions of Nelson's constructive logics into suitable extensions of $\mathsf{QBK}$. In conclusion, we discuss interpolation properties for $\mathsf{QBK}$-extensions. Bibliography: 21 titles.
Keywords: modal logic, constructive logic, strong negation, possible world semantics
Mots-clés : quantification.
@article{SM_2024_215_3_a2,
     author = {A. V. Grefenshtein and S. O. Speranski},
     title = {On the quantified version of the {Belnap--Dunn} modal logic},
     journal = {Sbornik. Mathematics},
     pages = {323--354},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a2/}
}
TY  - JOUR
AU  - A. V. Grefenshtein
AU  - S. O. Speranski
TI  - On the quantified version of the Belnap--Dunn modal logic
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 323
EP  - 354
VL  - 215
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a2/
LA  - en
ID  - SM_2024_215_3_a2
ER  - 
%0 Journal Article
%A A. V. Grefenshtein
%A S. O. Speranski
%T On the quantified version of the Belnap--Dunn modal logic
%J Sbornik. Mathematics
%D 2024
%P 323-354
%V 215
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a2/
%G en
%F SM_2024_215_3_a2
A. V. Grefenshtein; S. O. Speranski. On the quantified version of the Belnap--Dunn modal logic. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 323-354. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a2/