On uniqueness for series in the general Franklin system
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 308-322
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			We prove some uniqueness theorems for series in general Franklin systems. In particular, for series in the classical Franklin system our result asserts that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$ converge in measure to an integrable function $f$ and $\sup_i|S_{n_i}(x)|\infty$, for $x\notin B$, where $B$ is some countable set and $\sup_i(n_i/n_{i-1})\infty$, then this is the Fourier–Franklin series of $f$.
Bibliography: 29 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
Franklin system, Franklin series, general Franklin system, uniqueness theorem, Fourier–Franklin series.
                    
                    
                    
                  
                
                
                @article{SM_2024_215_3_a1,
     author = {G. G. Gevorkyan},
     title = {On uniqueness for series in the general {Franklin} system},
     journal = {Sbornik. Mathematics},
     pages = {308--322},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/}
}
                      
                      
                    G. G. Gevorkyan. On uniqueness for series in the general Franklin system. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 308-322. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/
