On uniqueness for series in the general Franklin system
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 308-322

Voir la notice de l'article provenant de la source Math-Net.Ru

We prove some uniqueness theorems for series in general Franklin systems. In particular, for series in the classical Franklin system our result asserts that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$ converge in measure to an integrable function $f$ and $\sup_i|S_{n_i}(x)|\infty$, for $x\notin B$, where $B$ is some countable set and $\sup_i(n_i/n_{i-1})\infty$, then this is the Fourier–Franklin series of $f$. Bibliography: 29 titles.
Keywords: Franklin system, Franklin series, general Franklin system, uniqueness theorem, Fourier–Franklin series.
@article{SM_2024_215_3_a1,
     author = {G. G. Gevorkyan},
     title = {On uniqueness for series in the general {Franklin} system},
     journal = {Sbornik. Mathematics},
     pages = {308--322},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On uniqueness for series in the general Franklin system
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 308
EP  - 322
VL  - 215
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/
LA  - en
ID  - SM_2024_215_3_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On uniqueness for series in the general Franklin system
%J Sbornik. Mathematics
%D 2024
%P 308-322
%V 215
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/
%G en
%F SM_2024_215_3_a1
G. G. Gevorkyan. On uniqueness for series in the general Franklin system. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 308-322. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/