On uniqueness for series in the general Franklin system
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 308-322 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

We prove some uniqueness theorems for series in general Franklin systems. In particular, for series in the classical Franklin system our result asserts that if the partial sums $S_{n_i}(x)=\sum_{k=0}^{n_i}a_kf_k(x)$ of a Franklin series $\sum_{k=0}^{\infty}a_kf_k(x)$ converge in measure to an integrable function $f$ and $\sup_i|S_{n_i}(x)|<\infty$, for $x\notin B$, where $B$ is some countable set and $\sup_i(n_i/n_{i-1})<\infty$, then this is the Fourier–Franklin series of $f$. Bibliography: 29 titles.
Keywords: Franklin system, Franklin series, general Franklin system, uniqueness theorem, Fourier–Franklin series.
@article{SM_2024_215_3_a1,
     author = {G. G. Gevorkyan},
     title = {On uniqueness for series in the general {Franklin} system},
     journal = {Sbornik. Mathematics},
     pages = {308--322},
     year = {2024},
     volume = {215},
     number = {3},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/}
}
TY  - JOUR
AU  - G. G. Gevorkyan
TI  - On uniqueness for series in the general Franklin system
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 308
EP  - 322
VL  - 215
IS  - 3
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/
LA  - en
ID  - SM_2024_215_3_a1
ER  - 
%0 Journal Article
%A G. G. Gevorkyan
%T On uniqueness for series in the general Franklin system
%J Sbornik. Mathematics
%D 2024
%P 308-322
%V 215
%N 3
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/
%G en
%F SM_2024_215_3_a1
G. G. Gevorkyan. On uniqueness for series in the general Franklin system. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 308-322. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a1/

[1] G. Cantor, “Ueber die Ausdehnung eines Satzes aus der Theorie der trigonometrischen Reihen”, Math. Ann., 5:1 (1872), 123–132 | DOI | MR | Zbl

[2] N. K. Bary, A treatise on trigonometric series, v. I, II, A Pergamon Press Book The Macmillan Co., New York, 1964, xxiii+553 pp., xix+508 pp. | MR | Zbl

[3] F. G. Arutyunyan, “Series in the Haar system”, Dokl. Akad. Nauk Arm. SSR, 42:3 (1966), 134–140 (Russian) | MR | Zbl

[4] M. B. Petrovskaya, “Null series in the Haar system and uniqueness sets”, Izv. Akad. Nauk SSSR Ser. Mat., 28:4 (1964), 773–798 (Russian) | MR | Zbl

[5] V. A. Skvortsov, “A Cantor-type theorem for the Haar system”, Vestn. Moskov. Univ. Ser. 1 Mat. Mekh., 1964, no. 5, 3–6 (Russian) | MR | Zbl

[6] F. G. Arutyunyan and A. A. Talalyan, “Uniqueness of series in the Haar and Walsh systems”, Izv. Akad. Nauk SSSR Ser. Mat., 28:6 (1964), 1391–1408 (Russian) | MR | Zbl

[7] G. Kozma and A. Olevskiĭ, “Cantor uniqueness and multiplicity along subsequences”, St. Petersburg Math. J., 32:2 (2021), 261–277 | DOI | MR | Zbl

[8] N. N. Kholshchevnikova, “Sum of everywhere convergent trigonometric series”, Math. Notes, 75:3 (2004), 439–443 | DOI | MR | Zbl

[9] V. A. Skvortsov and N. N. Kholshchevnikova, “Comparison of two generalized trigonometric integrals”, Math. Notes, 79:2 (2006), 254–262 | DOI | MR | Zbl

[10] G. G. Gevorkyan, “Uniqueness theorems for simple trigonometric series with application to multiple series”, Sb. Math., 212:12 (2021), 1675–1693 | DOI | MR | Zbl

[11] M. G. Plotnikov, “$\lambda$-Convergence of multiple Walsh–Paley series and sets of uniqueness”, Math. Notes, 102:2 (2017), 268–276 | DOI | MR | Zbl

[12] M. G. Plotnikov and Yu. A. Plotnikova, “Decomposition of dyadic measures and unions of closed $\mathscr{U}$-sets for series in a Haar system”, Sb. Math., 207:3 (2016), 444–457 | DOI | MR | Zbl

[13] G. G. Gevorkyan and K. A. Navasardyan, “Uniqueness theorems for generalized Haar systems”, Math. Notes, 104:1 (2018), 10–21 | DOI | MR | Zbl

[14] G. G. Gevorkyan and K. A. Navasardyan, “Uniqueness theorems for series by Vilenkin system”, J. Contemp. Math. Anal., 53:2 (2018), 88–99 | DOI | MR | Zbl

[15] G. G. Gevorkyan, “Uniqueness theorems for series in the Franklin system”, Math. Notes, 98:5 (2015), 847–851 | DOI | MR | Zbl

[16] G. G. Gevorkyan, “On the uniqueness of series in the Franklin system”, Sb. Math., 207:12 (2016), 1650–1673 | DOI | MR | Zbl

[17] G. G. Gevorkyan, “Uniqueness theorems for Franklin series converging to integrable functions”, Sb. Math., 209:6 (2018), 802–822 | DOI | MR | Zbl

[18] G. G. Gevorkyan, “Ciesielski and Franklin systems”, Approximation and probability, Banach Center Publ., 72, Polish Acad. Sci. Inst. Math., Warsaw, 2006, 85–92 | DOI | MR | Zbl

[19] Z. Wronicz, “On a problem of Gevorkyan for the Franklin system”, Opuscula Math., 36:5 (2016), 681–687 | DOI | MR | Zbl

[20] Z. Wronicz, “Uniqueness of series in the Franklin system and the Gevorkyan problems”, Opuscula Math., 41:2 (2021), 269–276 | DOI | MR | Zbl

[21] G. G. Gevorkyan, “On uniqueness for Franklin series with a convergent subsequence of partial sums”, Sb. Math., 214:2 (2023), 197–209 | DOI | MR | Zbl

[22] G. G. Gevorkyan and V. G. Mikaelyan, “Uniqueness of series by general Franklin system with convergent subsequence of partial sums”, J. Contemp. Math. Anal., 58:2 (2023), 67–80 | DOI | Zbl

[23] G. G. Gevorkyan and A. Kamont, On general Franklin systems, Dissertationes Math. (Rozprawy Mat.), 374, Polish Acad. Sci. Inst. Math. Inst. Math., Warsaw, 1998, 59 pp. | MR | Zbl

[24] Ph. Franklin, “A set of continuous orthogonal functions”, Math. Ann., 100:1 (1928), 522–529 | DOI | MR | Zbl

[25] Z. Ciesielski and A. Kamont, “Projections onto piecewise linear functions”, Funct. Approx. Comment. Math., 25 (1997), 129–143 | MR | Zbl

[26] G. G. Gevorkyan and A. Kamont, “Unconditionality of general Franklin systems in $L^p[0,1]$, $1

\infty$”, Studia Math., 164:2 (2004), 161–204 | DOI | MR | Zbl

[27] V. G. Mikaelyan, “On a ‘martingale property’ of series with respect to general Franklin system”, Dokl. Nats. Akad. Nauk Armen., 120:2 (2020), 110–114 (Russian) | MR

[28] G. G. Gevorkyan, “On a ‘martingale property’ of Franklin series”, Anal. Math., 45:4 (2019), 803–815 | DOI | MR | Zbl

[29] M. de Guzmán, Differentiation of integrals in $\mathbb{R}^n$, Lecture Notes in Math., 481, Springer-Verlag, Berlin–New York, 1975, xii+266 pp. | DOI | MR | Zbl