On a~property of the Rademacher system and~$\Lambda(2)$-spaces
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 291-307
Voir la notice de l'article provenant de la source Math-Net.Ru
The closed linear span of the Rademacher functions in $L^2[0,1]$ contains functions with arbitrarily large distribution, provided that the ratio of this distribution to the distribution of a standard normal variable tends to zero. A similar result is also obtained for some classes of $\Lambda(2)$-spaces.
Bibliography: 18 titles.
Keywords:
Rademacher system, $L^2$-space, rearrangement invariant space, Orlicz space, independent functions
Mots-clés : $\Lambda(2)$-space.
Mots-clés : $\Lambda(2)$-space.
@article{SM_2024_215_3_a0,
author = {S. V. Astashkin and E. M. Semenov},
title = {On a~property of the {Rademacher} system and~$\Lambda(2)$-spaces},
journal = {Sbornik. Mathematics},
pages = {291--307},
publisher = {mathdoc},
volume = {215},
number = {3},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a0/}
}
S. V. Astashkin; E. M. Semenov. On a~property of the Rademacher system and~$\Lambda(2)$-spaces. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 291-307. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a0/