On a~property of the Rademacher system and~$\Lambda(2)$-spaces
Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 291-307

Voir la notice de l'article provenant de la source Math-Net.Ru

The closed linear span of the Rademacher functions in $L^2[0,1]$ contains functions with arbitrarily large distribution, provided that the ratio of this distribution to the distribution of a standard normal variable tends to zero. A similar result is also obtained for some classes of $\Lambda(2)$-spaces. Bibliography: 18 titles.
Keywords: Rademacher system, $L^2$-space, rearrangement invariant space, Orlicz space, independent functions
Mots-clés : $\Lambda(2)$-space.
@article{SM_2024_215_3_a0,
     author = {S. V. Astashkin and E. M. Semenov},
     title = {On a~property of the {Rademacher} system and~$\Lambda(2)$-spaces},
     journal = {Sbornik. Mathematics},
     pages = {291--307},
     publisher = {mathdoc},
     volume = {215},
     number = {3},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_3_a0/}
}
TY  - JOUR
AU  - S. V. Astashkin
AU  - E. M. Semenov
TI  - On a~property of the Rademacher system and~$\Lambda(2)$-spaces
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 291
EP  - 307
VL  - 215
IS  - 3
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_3_a0/
LA  - en
ID  - SM_2024_215_3_a0
ER  - 
%0 Journal Article
%A S. V. Astashkin
%A E. M. Semenov
%T On a~property of the Rademacher system and~$\Lambda(2)$-spaces
%J Sbornik. Mathematics
%D 2024
%P 291-307
%V 215
%N 3
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_3_a0/
%G en
%F SM_2024_215_3_a0
S. V. Astashkin; E. M. Semenov. On a~property of the Rademacher system and~$\Lambda(2)$-spaces. Sbornik. Mathematics, Tome 215 (2024) no. 3, pp. 291-307. http://geodesic.mathdoc.fr/item/SM_2024_215_3_a0/