Rate of convergence of Thresholding Greedy Algorithms
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 275-289

Voir la notice de l'article provenant de la source Math-Net.Ru

The rate of convergence of the classical Thresholding Greedy Algorithm with respect to some bases is studied. We bound the error of approximation by the product of two norms, the norm of $f$ and the $A_1$-norm of $f$. We obtain some results for greedy bases, unconditional bases and quasi-greedy bases. In particular, we prove that our bounds for the trigonometric basis and Haar basis are optimal. Bibliography: 16 titles.
Keywords: greedy algorithm, rate of convergence.
Mots-clés : bases
@article{SM_2024_215_2_a7,
     author = {V. N. Temlyakov},
     title = {Rate of convergence of {Thresholding} {Greedy} {Algorithms}},
     journal = {Sbornik. Mathematics},
     pages = {275--289},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Rate of convergence of Thresholding Greedy Algorithms
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 275
EP  - 289
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/
LA  - en
ID  - SM_2024_215_2_a7
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Rate of convergence of Thresholding Greedy Algorithms
%J Sbornik. Mathematics
%D 2024
%P 275-289
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/
%G en
%F SM_2024_215_2_a7
V. N. Temlyakov. Rate of convergence of Thresholding Greedy Algorithms. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 275-289. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/