Rate of convergence of Thresholding Greedy Algorithms
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 275-289 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The rate of convergence of the classical Thresholding Greedy Algorithm with respect to some bases is studied. We bound the error of approximation by the product of two norms, the norm of $f$ and the $A_1$-norm of $f$. We obtain some results for greedy bases, unconditional bases and quasi-greedy bases. In particular, we prove that our bounds for the trigonometric basis and Haar basis are optimal. Bibliography: 16 titles.
Keywords: greedy algorithm, rate of convergence.
Mots-clés : bases
@article{SM_2024_215_2_a7,
     author = {V. N. Temlyakov},
     title = {Rate of convergence of {Thresholding} {Greedy} {Algorithms}},
     journal = {Sbornik. Mathematics},
     pages = {275--289},
     year = {2024},
     volume = {215},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/}
}
TY  - JOUR
AU  - V. N. Temlyakov
TI  - Rate of convergence of Thresholding Greedy Algorithms
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 275
EP  - 289
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/
LA  - en
ID  - SM_2024_215_2_a7
ER  - 
%0 Journal Article
%A V. N. Temlyakov
%T Rate of convergence of Thresholding Greedy Algorithms
%J Sbornik. Mathematics
%D 2024
%P 275-289
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/
%G en
%F SM_2024_215_2_a7
V. N. Temlyakov. Rate of convergence of Thresholding Greedy Algorithms. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 275-289. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/

[1] R. A. DeVore, S. V. Konyagin and V. N. Temlyakov, “Hyperbolic wavelet approximation”, Constr. Approx., 14:1 (1998), 1–26 | DOI | MR | Zbl

[2] Dinh Dũng, V. Temlyakov and T. Ullrich, Hyperbolic cross approximation, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Cham, 2018, xi+218 pp. | DOI | MR | Zbl

[3] M. J. Donahue, L. Gurvits, C. Darken and E. Sontag, “Rates of convex approximation in non-Hilbert spaces”, Constr. Approx., 13:2 (1997), 187–220 | DOI | MR | Zbl

[4] M. Frazier and B. Jawerth, “A discrete transform and decompositions of distribution spaces”, J. Funct. Anal., 93:1 (1990), 34–170 | DOI | MR | Zbl

[5] B. S. Kashin and A. A. Saakyan, Orthogonal series, Transl. Math. Monogr., 75, Amer. Math. Soc., Providence, RI, 1989, xii+451 pp. | DOI | MR | Zbl

[6] S. V. Konyagin and V. N. Temlyakov, “A remark on greedy approximation in Banach spaces”, East. J. Approx., 5:3 (1999), 365–379 | MR | Zbl

[7] V. N. Temlyakov, “Approximation of functions with a bounded mixed derivative”, Proc. Steklov Inst. Math., 178 (1989), 1–121 | MR | Zbl

[8] V. N. Temlyakov, “Greedy algorithm and $m$-term trigonometric approximation”, Constr. Approx., 14:4 (1998), 569–587 | DOI | MR | Zbl

[9] V. N. Temlyakov, “The best $m$-term approximation and greedy algorithms”, Adv. Comput. Math., 8:3 (1998), 249–265 | DOI | MR | Zbl

[10] V. N. Temlyakov, “Greedy algorithms with regard to multivariate systems with special structure”, Constr. Approx., 16:3 (2000), 399–425 | DOI | MR | Zbl

[11] V. N. Temlyakov, “Universal bases and greedy algorithms for anisotropic function classes”, Constr. Approx., 18:4 (2002), 529–550 | DOI | MR | Zbl

[12] V. Temlyakov, Sparse approximation with bases, Adv. Courses Math. CRM Barcelona, Birkhäuser/Springer, Basel, 2015, xii+261 pp. | DOI | MR | Zbl

[13] V. Temlyakov, Multivariate approximation, Cambridge Monogr. Appl. Comput. Math., 32, Cambridge Univ. Press, Cambridge, 2018, xvi+534 pp. | DOI | MR | Zbl

[14] V. N. Temlyakov, On the rate of convergence of greedy algorithms, arXiv: 2304.06423v1

[15] V. N. Temlyakov, Mingrui Yang and Peixin Ye, “Greedy approximation with regard to non-greedy bases”, Adv. Comput. Math., 34:3 (2011), 319–337 | DOI | MR | Zbl

[16] P. Wojtaszczyk, “Greedy algorithm for general biorthogonal systems”, J. Approx. Theory, 107:2 (2000), 293–314 | DOI | MR | Zbl