Rate of convergence of Thresholding Greedy Algorithms
    
    
  
  
  
      
      
      
        
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 275-289
    
  
  
  
  
  
    
      
      
        
      
      
      
    Voir la notice de l'article provenant de la source Math-Net.Ru
            
              			The rate of convergence of the classical Thresholding Greedy Algorithm with respect to some bases is studied. We bound the error of approximation by the product of two norms, the norm of $f$ and the $A_1$-norm of $f$. We obtain some results for greedy bases, unconditional bases and quasi-greedy bases. In particular, we prove that our bounds for the trigonometric basis and Haar basis are optimal.
Bibliography: 16 titles.
			
            
            
            
          
        
      
                  
                    
                    
                    
                        
Keywords: 
greedy algorithm, rate of convergence.
Mots-clés : bases
                    
                  
                
                
                Mots-clés : bases
@article{SM_2024_215_2_a7,
     author = {V. N. Temlyakov},
     title = {Rate of convergence of {Thresholding} {Greedy} {Algorithms}},
     journal = {Sbornik. Mathematics},
     pages = {275--289},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/}
}
                      
                      
                    V. N. Temlyakov. Rate of convergence of Thresholding Greedy Algorithms. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 275-289. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a7/