Capacities commensurable with harmonic ones
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 250-274

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $\mathcal L$ be a second-order homogeneous elliptic differential operator in $\mathbb R^N$, $N\ge3$, with constant complex coefficients. Removable singularities of $\mathrm L^{\infty}$-bounded solutions of the equation $\mathcal Lf=0$ are described in terms of the capacities $\gamma_{\mathcal L}$, where $\gamma_{\Delta}$ is the classical harmonic capacity from potential theory. It is shown for the corresponding values of $N$ that $\gamma_{\mathcal L}$ and $\gamma_{\Delta}$ are commensurable for all $\mathcal L$. Some ideas due to Tolsa are used in the proof. Various consequences of this commensurability are presented; in particular, criteria for the uniform approximation of functions by solutions of the equation $\mathcal Lf=0$ are stated in terms of harmonic capacities. Bibliography: 19 titles.
Keywords: homogeneous elliptic equation with complex coefficients, capacity, energy, singular integral.
@article{SM_2024_215_2_a6,
     author = {M. Ya. Mazalov},
     title = {Capacities commensurable with harmonic ones},
     journal = {Sbornik. Mathematics},
     pages = {250--274},
     publisher = {mathdoc},
     volume = {215},
     number = {2},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a6/}
}
TY  - JOUR
AU  - M. Ya. Mazalov
TI  - Capacities commensurable with harmonic ones
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 250
EP  - 274
VL  - 215
IS  - 2
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a6/
LA  - en
ID  - SM_2024_215_2_a6
ER  - 
%0 Journal Article
%A M. Ya. Mazalov
%T Capacities commensurable with harmonic ones
%J Sbornik. Mathematics
%D 2024
%P 250-274
%V 215
%N 2
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a6/
%G en
%F SM_2024_215_2_a6
M. Ya. Mazalov. Capacities commensurable with harmonic ones. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 250-274. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a6/