Mots-clés : Lebesgue space, Legendre polynomials
@article{SM_2024_215_2_a5,
author = {M. G. Magomed-Kasumov and T. N. Shakh-Emirov and R. M. Gadzhimirzaev},
title = {Basis property of the {Legendre} polynomials in variable exponent {Lebesgue} spaces},
journal = {Sbornik. Mathematics},
pages = {234--249},
year = {2024},
volume = {215},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/}
}
TY - JOUR AU - M. G. Magomed-Kasumov AU - T. N. Shakh-Emirov AU - R. M. Gadzhimirzaev TI - Basis property of the Legendre polynomials in variable exponent Lebesgue spaces JO - Sbornik. Mathematics PY - 2024 SP - 234 EP - 249 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/ LA - en ID - SM_2024_215_2_a5 ER -
%0 Journal Article %A M. G. Magomed-Kasumov %A T. N. Shakh-Emirov %A R. M. Gadzhimirzaev %T Basis property of the Legendre polynomials in variable exponent Lebesgue spaces %J Sbornik. Mathematics %D 2024 %P 234-249 %V 215 %N 2 %U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/ %G en %F SM_2024_215_2_a5
M. G. Magomed-Kasumov; T. N. Shakh-Emirov; R. M. Gadzhimirzaev. Basis property of the Legendre polynomials in variable exponent Lebesgue spaces. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 234-249. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/
[1] H. Pollard, “The mean convergence of orthogonal series. I”, Trans. Amer. Math. Soc., 62:3 (1947), 387–403 | DOI | MR | Zbl
[2] J. Newman and W. Rudin, “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3:2 (1952), 219–222 | DOI | MR | Zbl
[3] I. I. Sharapudinov, “The basis property of the Legendre polynomials in the variable exponent Lebesgue space $L^{p(x)}(-1,1)$”, Sb. Math., 200:1 (2009), 133–156 | DOI | MR | Zbl
[4] I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl
[5] I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | DOI | MR | Zbl
[6] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013, x+312 pp. | DOI | MR | Zbl
[7] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939, ix+401 pp. | MR | Zbl
[8] L. Diening and M. Růžička, “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics”, J. Reine Angew. Math., 2003:563 (2003), 197–220 | DOI | MR | Zbl
[9] V. Kokilashvili and S. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent”, Georgian Math. J., 10:1 (2003), 145–156 | DOI | MR | Zbl