Basis property of the Legendre polynomials in variable exponent Lebesgue spaces
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 234-249 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Sharapudinov proved that the Legendre polynomials form a basis of the Lebesgue space with variable exponent $p(x)$ if $p(x) > 1$ satisfies the Dini–Lipschitz condition and is constant near the endpoints of the orthogonality interval. We prove that the system of Legendre polynomials forms a basis of these spaces without the condition that the variable exponent be constant near the endpoints. Bibliography: 9 titles.
Keywords: variable exponent, basis, the Dini–Lipschitz condition.
Mots-clés : Lebesgue space, Legendre polynomials
@article{SM_2024_215_2_a5,
     author = {M. G. Magomed-Kasumov and T. N. Shakh-Emirov and R. M. Gadzhimirzaev},
     title = {Basis property of the {Legendre} polynomials in variable exponent {Lebesgue} spaces},
     journal = {Sbornik. Mathematics},
     pages = {234--249},
     year = {2024},
     volume = {215},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/}
}
TY  - JOUR
AU  - M. G. Magomed-Kasumov
AU  - T. N. Shakh-Emirov
AU  - R. M. Gadzhimirzaev
TI  - Basis property of the Legendre polynomials in variable exponent Lebesgue spaces
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 234
EP  - 249
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/
LA  - en
ID  - SM_2024_215_2_a5
ER  - 
%0 Journal Article
%A M. G. Magomed-Kasumov
%A T. N. Shakh-Emirov
%A R. M. Gadzhimirzaev
%T Basis property of the Legendre polynomials in variable exponent Lebesgue spaces
%J Sbornik. Mathematics
%D 2024
%P 234-249
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/
%G en
%F SM_2024_215_2_a5
M. G. Magomed-Kasumov; T. N. Shakh-Emirov; R. M. Gadzhimirzaev. Basis property of the Legendre polynomials in variable exponent Lebesgue spaces. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 234-249. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a5/

[1] H. Pollard, “The mean convergence of orthogonal series. I”, Trans. Amer. Math. Soc., 62:3 (1947), 387–403 | DOI | MR | Zbl

[2] J. Newman and W. Rudin, “Mean convergence of orthogonal series”, Proc. Amer. Math. Soc., 3:2 (1952), 219–222 | DOI | MR | Zbl

[3] I. I. Sharapudinov, “The basis property of the Legendre polynomials in the variable exponent Lebesgue space $L^{p(x)}(-1,1)$”, Sb. Math., 200:1 (2009), 133–156 | DOI | MR | Zbl

[4] I. I. Sharapudinov, “Topology of the space $\mathscr L^{p(t)}([0,1])$”, Math. Notes, 26:4 (1979), 796–806 | DOI | MR | Zbl

[5] I. I. Sharapudinov, “On the basis property of the Haar system in the space $\mathscr L^{p(t)}([0,1])$ and the principle of localization in the mean”, Math. USSR-Sb., 58:1 (1987), 279–287 | DOI | MR | Zbl

[6] D. V. Cruz-Uribe and A. Fiorenza, Variable Lebesgue spaces. Foundations and harmonic analysis, Appl. Numer. Harmon. Anal., Birkhäuser/Springer, Heidelberg, 2013, x+312 pp. | DOI | MR | Zbl

[7] G. Szegö, Orthogonal polynomials, Amer. Math. Soc. Colloq. Publ., 23, Amer. Math. Soc., New York, 1939, ix+401 pp. | MR | Zbl

[8] L. Diening and M. Růžička, “Calderón–Zygmund operators on generalized Lebesgue spaces $L^{p(\cdot)}$ and problems related to fluid dynamics”, J. Reine Angew. Math., 2003:563 (2003), 197–220 | DOI | MR | Zbl

[9] V. Kokilashvili and S. Samko, “Singular integrals in weighted Lebesgue spaces with variable exponent”, Georgian Math. J., 10:1 (2003), 145–156 | DOI | MR | Zbl