Mots-clés : univalence domain
@article{SM_2024_215_2_a3,
author = {O. S. Kudryavtseva and A. P. Solodov},
title = {Sharp univalent covering domain for the class of holomorphic self-maps of a~disc with~fixed interior and boundary points},
journal = {Sbornik. Mathematics},
pages = {183--205},
year = {2024},
volume = {215},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/}
}
TY - JOUR AU - O. S. Kudryavtseva AU - A. P. Solodov TI - Sharp univalent covering domain for the class of holomorphic self-maps of a disc with fixed interior and boundary points JO - Sbornik. Mathematics PY - 2024 SP - 183 EP - 205 VL - 215 IS - 2 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/ LA - en ID - SM_2024_215_2_a3 ER -
%0 Journal Article %A O. S. Kudryavtseva %A A. P. Solodov %T Sharp univalent covering domain for the class of holomorphic self-maps of a disc with fixed interior and boundary points %J Sbornik. Mathematics %D 2024 %P 183-205 %V 215 %N 2 %U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/ %G en %F SM_2024_215_2_a3
O. S. Kudryavtseva; A. P. Solodov. Sharp univalent covering domain for the class of holomorphic self-maps of a disc with fixed interior and boundary points. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 183-205. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/
[1] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | MR | Zbl
[2] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | MR | Zbl
[3] O. S. Kudryavtseva and A. P. Solodov, “Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points”, Sb. Math., 210:7 (2019), 1019–1042 | DOI | MR | Zbl
[4] O. S. Kudryavtseva and A. P. Solodov, “Two-sided estimate of univalence domains for holomorphic mappings of the unit disk into itself keeping its diameter”, Russian Math. (Iz. VUZ), 63:7 (2019), 80–83 | DOI | DOI | MR | Zbl
[5] O. S. Kudryavtseva and A. P. Solodov, “Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter”, Sb. Math., 211:11 (2020), 1592–1611 | DOI | MR | Zbl
[6] A. P. Solodov, “Strengthening of Landau's theorem for holomorphic self-mappings of a disk with fixed points”, Math. Notes, 108:4 (2020), 626–628 | DOI | MR | Zbl
[7] A. P. Solodov, “The exact domain of univalence on the class of holomorphic maps of a disc into itself with an interior and a boundary fixed points”, Izv. Math., 85:5 (2021), 1008–1035 | DOI | MR | Zbl
[8] P. Koebe, “Über die Uniformisierung der algebraischen Kurven. II”, Math. Ann., 69:1 (1910), 1–81 | DOI | MR | Zbl
[9] L. Bieberbach, “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln”, Sitzungsber Preuß. Akad. Wiss., Phys.-Math. Kl., 138 (1916), 940–955 | Zbl
[10] C. Carathéodory, “Sur quelques applications du théorème de Landau–Picard”, C. R. Acad. Sci. Paris, 144 (1907), 1203–1206 | Zbl
[11] A. Bloch, “Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), 17 (1925), 1–22 | DOI | MR | Zbl
[12] L. V. Ahlfors and H. Grunsky, “Über die Blochsche Konstante”, Math. Z., 42:1 (1937), 671–673 | DOI | MR | Zbl
[13] L. V. Ahlfors, “An extension of Schwarz's lemma”, Trans. Amer. Math. Soc., 43:3 (1938), 359–364 | DOI | MR | Zbl
[14] M. Heins, “On a class of conformal metrics”, Nagoya Math. J., 21 (1962), 1–60 | DOI | MR | Zbl
[15] M. Bonk, “On Bloch's constant”, Proc. Amer. Math. Soc., 110:4 (1990), 889–894 | DOI | MR | Zbl
[16] Huaihui Chen and P. M. Gauthier, “On Bloch's constant”, J. Anal. Math., 69 (1996), 275–291 | DOI | MR | Zbl
[17] G. Valiron, Fonctions analytiques, Presses Univ. de France, Paris, 1954, 236 pp. | MR | Zbl
[18] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl
[19] G. Pick, “Über den Koebeschen Verzerrungssatz”, Ber. Verh. sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl., 68 (1916), 58–64 | Zbl
[20] E. Landau, “Über die Blochsche Konstante und zwei verwandte Weltkonstanten”, Math. Z., 30:1 (1929), 608–634 | DOI | MR | Zbl
[21] J. Dieudonné, “Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d'une variable complexe”, Ann. Sci. École Norm. Sup. (3), 48 (1931), 247–358 | DOI | MR | Zbl
[22] A. F. Bermant, “On certain generalizations of E. Lindelöf's principles and their applications”, Mat. Sb., 20(62):1 (1947), 55–112 | MR | Zbl
[23] O. S. Kudryavtseva and A. P. Solodov, “Inverse function theorem on the class of holomorphic self-maps of a disc with two fixed points”, Russian Math. Surveys, 77:1 (2022), 177–179 | DOI | MR | Zbl
[24] V. V. Goryainov, O. S. Kudryavtseva and A. P. Solodov, “Iterates of holomorphic maps, fixed points, and domains of univalence”, Russian Math. Surveys, 77:6 (2022), 959–1020 | DOI | MR | Zbl
[25] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | Zbl
[26] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl
[27] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl
[28] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl
[29] I. N. Baker and Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. II”, J. London Math. Soc. (2), 20:2 (1979), 255–258 | DOI | MR | Zbl
[30] J. Becker and Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl