Sharp univalent covering domain for the class of holomorphic self-maps of a disc with fixed interior and boundary points
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 183-205 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The class of holomorphic maps of the unit disc to itself, with an interior and a boundary fixed point is under consideration. For the class of such functions a sharp univalent covering domain is found in its dependence on the value of the angular derivative at the boundary fixed point and the position of the interior fixed point. This result can be viewed as a refinement of Landau's theorem on the univalent covering disc for the class of bounded holomorphic functions with prescribed derivative at the interior fixed point. Bibliography: 30 titles.
Keywords: holomorphic map, fixed point, angular derivative, univalent covering domain.
Mots-clés : univalence domain
@article{SM_2024_215_2_a3,
     author = {O. S. Kudryavtseva and A. P. Solodov},
     title = {Sharp univalent covering domain for the class of holomorphic self-maps of a~disc with~fixed interior and boundary points},
     journal = {Sbornik. Mathematics},
     pages = {183--205},
     year = {2024},
     volume = {215},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/}
}
TY  - JOUR
AU  - O. S. Kudryavtseva
AU  - A. P. Solodov
TI  - Sharp univalent covering domain for the class of holomorphic self-maps of a disc with fixed interior and boundary points
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 183
EP  - 205
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/
LA  - en
ID  - SM_2024_215_2_a3
ER  - 
%0 Journal Article
%A O. S. Kudryavtseva
%A A. P. Solodov
%T Sharp univalent covering domain for the class of holomorphic self-maps of a disc with fixed interior and boundary points
%J Sbornik. Mathematics
%D 2024
%P 183-205
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/
%G en
%F SM_2024_215_2_a3
O. S. Kudryavtseva; A. P. Solodov. Sharp univalent covering domain for the class of holomorphic self-maps of a disc with fixed interior and boundary points. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 183-205. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a3/

[1] V. V. Goryainov, “Semigroups of analytic functions in analysis and applications”, Russian Math. Surveys, 67:6 (2012), 975–1021 | DOI | MR | Zbl

[2] V. V. Goryainov, “Holomorphic mappings of the unit disc into itself with two fixed points”, Sb. Math., 208:3 (2017), 360–376 | DOI | MR | Zbl

[3] O. S. Kudryavtseva and A. P. Solodov, “Two-sided estimates for domains of univalence for classes of holomorphic self-maps of a disc with two fixed points”, Sb. Math., 210:7 (2019), 1019–1042 | DOI | MR | Zbl

[4] O. S. Kudryavtseva and A. P. Solodov, “Two-sided estimate of univalence domains for holomorphic mappings of the unit disk into itself keeping its diameter”, Russian Math. (Iz. VUZ), 63:7 (2019), 80–83 | DOI | DOI | MR | Zbl

[5] O. S. Kudryavtseva and A. P. Solodov, “Asymptotically sharp two-sided estimate for domains of univalence of holomorphic self-maps of a disc with an invariant diameter”, Sb. Math., 211:11 (2020), 1592–1611 | DOI | MR | Zbl

[6] A. P. Solodov, “Strengthening of Landau's theorem for holomorphic self-mappings of a disk with fixed points”, Math. Notes, 108:4 (2020), 626–628 | DOI | MR | Zbl

[7] A. P. Solodov, “The exact domain of univalence on the class of holomorphic maps of a disc into itself with an interior and a boundary fixed points”, Izv. Math., 85:5 (2021), 1008–1035 | DOI | MR | Zbl

[8] P. Koebe, “Über die Uniformisierung der algebraischen Kurven. II”, Math. Ann., 69:1 (1910), 1–81 | DOI | MR | Zbl

[9] L. Bieberbach, “Über die Koeffizienten derjenigen Potenzreihen, welche eine schlichte Abbildung des Einheitskreises vermitteln”, Sitzungsber Preuß. Akad. Wiss., Phys.-Math. Kl., 138 (1916), 940–955 | Zbl

[10] C. Carathéodory, “Sur quelques applications du théorème de Landau–Picard”, C. R. Acad. Sci. Paris, 144 (1907), 1203–1206 | Zbl

[11] A. Bloch, “Les théorèmes de M. Valiron sur les fonctions entières et la théorie de l'uniformisation”, Ann. Fac. Sci. Toulouse Sci. Math. Sci. Phys. (3), 17 (1925), 1–22 | DOI | MR | Zbl

[12] L. V. Ahlfors and H. Grunsky, “Über die Blochsche Konstante”, Math. Z., 42:1 (1937), 671–673 | DOI | MR | Zbl

[13] L. V. Ahlfors, “An extension of Schwarz's lemma”, Trans. Amer. Math. Soc., 43:3 (1938), 359–364 | DOI | MR | Zbl

[14] M. Heins, “On a class of conformal metrics”, Nagoya Math. J., 21 (1962), 1–60 | DOI | MR | Zbl

[15] M. Bonk, “On Bloch's constant”, Proc. Amer. Math. Soc., 110:4 (1990), 889–894 | DOI | MR | Zbl

[16] Huaihui Chen and P. M. Gauthier, “On Bloch's constant”, J. Anal. Math., 69 (1996), 275–291 | DOI | MR | Zbl

[17] G. Valiron, Fonctions analytiques, Presses Univ. de France, Paris, 1954, 236 pp. | MR | Zbl

[18] E. Landau, “Der Picard–Schottkysche Satz und die Blochsche Konstante”, Sitzungsber. Preuß. Akad. Wiss., Phys.-Math. Kl., 1926 (1926), 467–474 | Zbl

[19] G. Pick, “Über den Koebeschen Verzerrungssatz”, Ber. Verh. sächs. Ges. Wiss. Leipzig, Math.-Phys. Kl., 68 (1916), 58–64 | Zbl

[20] E. Landau, “Über die Blochsche Konstante und zwei verwandte Weltkonstanten”, Math. Z., 30:1 (1929), 608–634 | DOI | MR | Zbl

[21] J. Dieudonné, “Recherches sur quelques problèmes relatifs aux polynômes et aux fonctions bornées d'une variable complexe”, Ann. Sci. École Norm. Sup. (3), 48 (1931), 247–358 | DOI | MR | Zbl

[22] A. F. Bermant, “On certain generalizations of E. Lindelöf's principles and their applications”, Mat. Sb., 20(62):1 (1947), 55–112 | MR | Zbl

[23] O. S. Kudryavtseva and A. P. Solodov, “Inverse function theorem on the class of holomorphic self-maps of a disc with two fixed points”, Russian Math. Surveys, 77:1 (2022), 177–179 | DOI | MR | Zbl

[24] V. V. Goryainov, O. S. Kudryavtseva and A. P. Solodov, “Iterates of holomorphic maps, fixed points, and domains of univalence”, Russian Math. Surveys, 77:6 (2022), 959–1020 | DOI | MR | Zbl

[25] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | Zbl

[26] K. Löwner, “Untersuchungen über schlichte konforme Abbildungen des Einheitskreises. I”, Math. Ann., 89:1–2 (1923), 103–121 | DOI | MR | Zbl

[27] L. V. Ahlfors, Conformal invariants: topics in geometric function theory, McGraw-Hill Series in Higher Math., McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973, ix+157 pp. | MR | Zbl

[28] Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. I”, J. London Math. Soc. (2), 19:3 (1979), 439–447 | DOI | MR | Zbl

[29] I. N. Baker and Ch. Pommerenke, “On the iteration of analytic functions in a halfplane. II”, J. London Math. Soc. (2), 20:2 (1979), 255–258 | DOI | MR | Zbl

[30] J. Becker and Ch. Pommerenke, “Angular derivatives for holomorphic self-maps of the disk”, Comput. Methods Funct. Theory, 17:3 (2017), 487–497 | DOI | MR | Zbl