The circle criterion and Tsypkin's criterion for systems with several nonlinearities without the use of the $S$-procedure
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 169-182 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The circle criterion (for continuous-time systems) and Tsypkin's criterion (for discrete-time systems) of absolute stability for Lurie systems with several nonlinearities are obtained with the use of the convolution theorem and without use of the $S$-procedure. On the basis of the convolution theorem, two theorems are proved which lead to a substantial reduction in the dimension of connected systems of linear matrix inequalities. Bibliography: 19 titles.
Keywords: absolute stability of Lurie systems, matrix inequalities, circle criterion, $S$-procedure.
Mots-clés : Tsypkin's criterion
@article{SM_2024_215_2_a2,
     author = {V. A. Kamenetskiy},
     title = {The circle criterion and {Tsypkin's} criterion for systems with~several nonlinearities without the use of the $S$-procedure},
     journal = {Sbornik. Mathematics},
     pages = {169--182},
     year = {2024},
     volume = {215},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/}
}
TY  - JOUR
AU  - V. A. Kamenetskiy
TI  - The circle criterion and Tsypkin's criterion for systems with several nonlinearities without the use of the $S$-procedure
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 169
EP  - 182
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/
LA  - en
ID  - SM_2024_215_2_a2
ER  - 
%0 Journal Article
%A V. A. Kamenetskiy
%T The circle criterion and Tsypkin's criterion for systems with several nonlinearities without the use of the $S$-procedure
%J Sbornik. Mathematics
%D 2024
%P 169-182
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/
%G en
%F SM_2024_215_2_a2
V. A. Kamenetskiy. The circle criterion and Tsypkin's criterion for systems with several nonlinearities without the use of the $S$-procedure. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 169-182. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/

[1] A. I. Lurie and V. H. Postnikov, “On stability theory of control systems”, Prikl. Mat. Mekh., 8:3 (1944), 246–248 (Russian) | MR | Zbl

[2] M. R. Liberzon, “Essays on the absolute stability theory”, Autom. Remote Control, 67:10 (2006), 1610–1644 | DOI | MR | Zbl

[3] D. Liberzon, Switching in systems and control, Systems Control Found. Appl., Birkhäuser Boston, Inc., Boston, MA, 2003, xiv+233 pp. | DOI | MR | Zbl

[4] A. Fradkov, “Early ideas of the absolute stability theory”, 2020 European Control Conference (ECC) (St. Petersburg 2020), IEEE, 2020, 762–768 | DOI

[5] B. T. Polyak, M. V. Khlebnikov and P. S. Shcherbakov, “Linear matrix inequalities in control systems with uncertainty”, Autom. Remote Control, 82:1 (2021), 1–40 | DOI | MR | Zbl

[6] V. A. Yakubovich, “Frequency conditions for the absolute stability of control systems with several nonlinear or linear nonstationary blocks”, Autom. Remote Control, 1967:6 (1967), 857–880 | Zbl

[7] V. A. Yakubovich, “Absolute instability of nonlinear control systems. II. Systems with nonstationary nonlinearities. The circle criterion”, Autom. Remote Control, 32:6 (1971), 876–884 | MR | Zbl

[8] V. A. Yakubovich, “Absolute stability of pulsed systems with several nonlinear or linear but nonstationary blocks. I”, Autom. Remote Control, 1967:9 (1967), 81–101 ; II, 1968:2 (1968), 244–263 | MR | Zbl | MR | Zbl

[9] A. I. Shepeljavyi, “Absolute instability of nonlinear pulse-amplitude control systems. Frequency criteria”, Autom. Remote Control, 33:6 (1972), 929–935 | Zbl

[10] S. V. Gusev and A. L. Likhtarnikov, “Kalman–Popov–Yakubovich lemma and the $S$-procedure: a historical essay”, Autom. Remote Control, 67:11 (2006), 1768–1810 | DOI | MR | Zbl

[11] V. A. Kamenetskii, “Absolute stability and absolute instability of control systems with several nonlinear nonstationary elements”, Autom. Remote Control, 44:12 (1983), 1543–1552 | MR | Zbl

[12] V. A. Kanenetskiy, “Absolute stability of discrete control systems with nonstationary nonlinearities”, Avtomat. i Telemekh., 1985, no. 8, 172–176 (Russian) | MR

[13] V. I. Skorodinskii, “Absolute stability and absolute instability of control systems with two nonstationary nonlinear elements. I”, Autom. Remote Control, 42:9 (1981), 1149–1157 | MR | Zbl

[14] V. A. Kamenetskiy, “Frequency-domain stability conditions for hybrid systems”, Autom. Remote Control, 78:12 (2017), 2101–2119 | DOI | MR | Zbl

[15] A. Kh. Gelig, G. A. Leonov and V. A. Yakubovich, Stability of nonlinear systems with a nonunique equilibrium state, Nauka, Moscow, 1978, 400 pp. (Russian) | MR | Zbl

[16] D. V. Balandin and M. M. Kogan, Synthesis of control laws on the basis of linear matrix inequalities, Fizmatlit, Moscow, 2007, 280 pp. (Russian) | Zbl

[17] V. A. Kamenetskiy, “Frequency-domain stability conditions for discrete-time switched systems”, Autom. Remote Control, 79:8 (2018), 1371–1389 | DOI | MR | Zbl

[18] V. A. Kamenetskiy, “Discrete-time pairwise connected switched systems and Lur'e systems. Tsypkin's criterion for systems with two nonlinearities”, Autom. Remote Control, 83:9 (2022), 1371–1392 | DOI | MR | Zbl

[19] S. Boyd, L. El Ghaoui, E. Feron and V. Balakrishnan, Linear matrix inequalities in system and control theory, SIAM Stud. Appl. Math., 15, SIAM, Philadelphia, PA, 1994, xii+193 pp. | DOI | MR | Zbl