The circle criterion and Tsypkin's criterion for systems with~several nonlinearities without the use of the $S$-procedure
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 169-182
Voir la notice de l'article provenant de la source Math-Net.Ru
The circle criterion (for continuous-time systems) and Tsypkin's criterion (for discrete-time systems) of absolute stability for Lurie systems with several nonlinearities are obtained with the use of the convolution theorem and without use of the $S$-procedure. On the basis of the convolution theorem, two theorems are proved which lead to a substantial reduction in the dimension of connected systems of linear matrix inequalities.
Bibliography: 19 titles.
Keywords:
absolute stability of Lurie systems, matrix inequalities, circle criterion, $S$-procedure.
Mots-clés : Tsypkin's criterion
Mots-clés : Tsypkin's criterion
@article{SM_2024_215_2_a2,
author = {V. A. Kamenetskiy},
title = {The circle criterion and {Tsypkin's} criterion for systems with~several nonlinearities without the use of the $S$-procedure},
journal = {Sbornik. Mathematics},
pages = {169--182},
publisher = {mathdoc},
volume = {215},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/}
}
TY - JOUR AU - V. A. Kamenetskiy TI - The circle criterion and Tsypkin's criterion for systems with~several nonlinearities without the use of the $S$-procedure JO - Sbornik. Mathematics PY - 2024 SP - 169 EP - 182 VL - 215 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/ LA - en ID - SM_2024_215_2_a2 ER -
%0 Journal Article %A V. A. Kamenetskiy %T The circle criterion and Tsypkin's criterion for systems with~several nonlinearities without the use of the $S$-procedure %J Sbornik. Mathematics %D 2024 %P 169-182 %V 215 %N 2 %I mathdoc %U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/ %G en %F SM_2024_215_2_a2
V. A. Kamenetskiy. The circle criterion and Tsypkin's criterion for systems with~several nonlinearities without the use of the $S$-procedure. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 169-182. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a2/