On isometric embeddings of prisms
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 157-168
Cet article a éte moissonné depuis la source Math-Net.Ru
For an arbitrary convex polyhedral prism, a family of isometric embeddings of it is constructed that satisfy conditions similar to those that Pogorelov imposed on an isometry of a circular cylinder and called the ‘conditions of support on circles at the edges’. Bibliography: 4 titles.
Keywords:
piecewise linear isometric embedding.
Mots-clés : prism, prismatoid, $\beta$-format
Mots-clés : prism, prismatoid, $\beta$-format
@article{SM_2024_215_2_a1,
author = {N. P. Dolbilin and M. I. Shtogrin},
title = {On isometric embeddings of prisms},
journal = {Sbornik. Mathematics},
pages = {157--168},
year = {2024},
volume = {215},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a1/}
}
N. P. Dolbilin; M. I. Shtogrin. On isometric embeddings of prisms. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a1/
[1] A. V. Pogorelov, Geometric methods in the nonlinear theory of elastic shells, Nauka, Moscow, 1967, 280 pp. (Russian) | MR | Zbl
[2] M. I. Shtogrin, “Special isometric transformations of the surfaces of the Platonic solids”, Russian Math. Surveys, 60:4 (2005), 799–801 | DOI | MR | Zbl
[3] M. I. Shtogrin, “Isometric immersions of a cone and a cylinder”, Izv. Math., 73:1 (2009), 181–213 | DOI | MR | Zbl
[4] M. I. Shtogrin, “Pogorelov's problem on isometric transformations of a cylindrical surface”, Russian Math. Surveys, 74:6 (2019), 1132–1134 | DOI | MR | Zbl