On isometric embeddings of prisms
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 157-168 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

For an arbitrary convex polyhedral prism, a family of isometric embeddings of it is constructed that satisfy conditions similar to those that Pogorelov imposed on an isometry of a circular cylinder and called the ‘conditions of support on circles at the edges’. Bibliography: 4 titles.
Keywords: piecewise linear isometric embedding.
Mots-clés : prism, prismatoid, $\beta$-format
@article{SM_2024_215_2_a1,
     author = {N. P. Dolbilin and M. I. Shtogrin},
     title = {On isometric embeddings of prisms},
     journal = {Sbornik. Mathematics},
     pages = {157--168},
     year = {2024},
     volume = {215},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a1/}
}
TY  - JOUR
AU  - N. P. Dolbilin
AU  - M. I. Shtogrin
TI  - On isometric embeddings of prisms
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 157
EP  - 168
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a1/
LA  - en
ID  - SM_2024_215_2_a1
ER  - 
%0 Journal Article
%A N. P. Dolbilin
%A M. I. Shtogrin
%T On isometric embeddings of prisms
%J Sbornik. Mathematics
%D 2024
%P 157-168
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a1/
%G en
%F SM_2024_215_2_a1
N. P. Dolbilin; M. I. Shtogrin. On isometric embeddings of prisms. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 157-168. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a1/

[1] A. V. Pogorelov, Geometric methods in the nonlinear theory of elastic shells, Nauka, Moscow, 1967, 280 pp. (Russian) | MR | Zbl

[2] M. I. Shtogrin, “Special isometric transformations of the surfaces of the Platonic solids”, Russian Math. Surveys, 60:4 (2005), 799–801 | DOI | MR | Zbl

[3] M. I. Shtogrin, “Isometric immersions of a cone and a cylinder”, Izv. Math., 73:1 (2009), 181–213 | DOI | MR | Zbl

[4] M. I. Shtogrin, “Pogorelov's problem on isometric transformations of a cylindrical surface”, Russian Math. Surveys, 74:6 (2019), 1132–1134 | DOI | MR | Zbl