Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 141-156 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

The paper is devoted to holomorphic vector bundles with logarithmic connections on a compact Riemann surface and the applications of the results obtained to the question of solvability of the Riemann–Hilbert problem on a Riemann surface. We give an example of a representation of the fundamental group of a Riemann surface with four punctured points which cannot be realized as the monodromy representation of a logarithmic connection with four singular points on a semistable bundle. For an arbitrary pair of a bundle and a logarithmic connection on it we prove an estimate for the slopes of the associated Harder–Narasimhan filtration quotients. In addition, we present results on the realizability of a representation as a direct summand in the monodromy representation of a logarithmic connection on a semistable bundle of degree zero. Bibliography: 9 titles.
Keywords: Riemann surface, Riemann–Hilbert problem, semistable bundle, logarithmic connection.
Mots-clés : monodromy
@article{SM_2024_215_2_a0,
     author = {I. V. Vyugin and L. A. Dudnikova},
     title = {Stable vector bundles and the {Riemann{\textendash}Hilbert} problem on {a~Riemann} surface},
     journal = {Sbornik. Mathematics},
     pages = {141--156},
     year = {2024},
     volume = {215},
     number = {2},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/}
}
TY  - JOUR
AU  - I. V. Vyugin
AU  - L. A. Dudnikova
TI  - Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 141
EP  - 156
VL  - 215
IS  - 2
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/
LA  - en
ID  - SM_2024_215_2_a0
ER  - 
%0 Journal Article
%A I. V. Vyugin
%A L. A. Dudnikova
%T Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface
%J Sbornik. Mathematics
%D 2024
%P 141-156
%V 215
%N 2
%U http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/
%G en
%F SM_2024_215_2_a0
I. V. Vyugin; L. A. Dudnikova. Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 141-156. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/

[1] A. A. Bolibrukh, Fuchsian differential equations and holomorphic bundles, Moscow Center of Continuous Mathematical Education, Moscow, 2000, 127 pp. (Russian)

[2] A. A. Bolibrukh, “The Riemann–Hilbert problem on a compact Riemannian surface”, Proc. Steklov Inst. Math., 238 (2002), 47–60 | MR | Zbl

[3] H. Esnault and E. Viehweg, “Logarithmic de Rham complexes and vanishing theorems”, Invent. Math., 86:1 (1986), 161–194 | DOI | MR | Zbl

[4] G. Harder and M. S. Narasimhan, “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann., 212 (1975), 215–248 | DOI | MR | Zbl

[5] A. A. Bolibrukh, “The 21st Hilbert problem for linear Fuchsian systems”, Proc. Steklov Inst. Math., 206 (1995), 1–145 | MR | Zbl

[6] I. V. V'yugin and R. R. Gontsov, “Additional parameters in inverse monodromy problems”, Sb. Math., 197:12 (2006), 1753–1773 | DOI | MR | Zbl

[7] M. S. Narasimhan and C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567 | DOI | MR | Zbl

[8] I. V. V'yugin, “Fuchsian systems with completely reducible monodromy”, Math. Notes, 85:6 (2009), 780–786 | DOI | MR | Zbl

[9] I. V. V'yugin, “Irreducible Fuchsian system with reducible monodromy representation”, Math. Notes, 80:4 (2006), 478–484 | DOI | MR | Zbl