Stable vector bundles and the Riemann--Hilbert problem on a~Riemann surface
Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 141-156
Voir la notice de l'article provenant de la source Math-Net.Ru
The paper is devoted to holomorphic vector bundles with logarithmic connections on a compact Riemann surface and the applications of the results obtained to the question of solvability of the Riemann–Hilbert problem on a Riemann surface. We give an example of a representation of the fundamental group of a Riemann surface with four punctured points which cannot be realized as the monodromy representation of a logarithmic connection with four singular points on a semistable bundle. For an arbitrary pair of a bundle and a logarithmic connection on it we prove an estimate for the slopes of the associated Harder–Narasimhan filtration quotients. In addition, we present results on the realizability of a representation as a direct summand in the monodromy representation of a logarithmic connection on a semistable bundle of degree zero.
Bibliography: 9 titles.
Keywords:
Riemann surface, Riemann–Hilbert problem, semistable bundle, logarithmic connection.
Mots-clés : monodromy
Mots-clés : monodromy
@article{SM_2024_215_2_a0,
author = {I. V. Vyugin and L. A. Dudnikova},
title = {Stable vector bundles and the {Riemann--Hilbert} problem on {a~Riemann} surface},
journal = {Sbornik. Mathematics},
pages = {141--156},
publisher = {mathdoc},
volume = {215},
number = {2},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/}
}
TY - JOUR AU - I. V. Vyugin AU - L. A. Dudnikova TI - Stable vector bundles and the Riemann--Hilbert problem on a~Riemann surface JO - Sbornik. Mathematics PY - 2024 SP - 141 EP - 156 VL - 215 IS - 2 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/ LA - en ID - SM_2024_215_2_a0 ER -
I. V. Vyugin; L. A. Dudnikova. Stable vector bundles and the Riemann--Hilbert problem on a~Riemann surface. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 141-156. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/