Mots-clés : monodromy
@article{SM_2024_215_2_a0,
author = {I. V. Vyugin and L. A. Dudnikova},
title = {Stable vector bundles and the {Riemann{\textendash}Hilbert} problem on {a~Riemann} surface},
journal = {Sbornik. Mathematics},
pages = {141--156},
year = {2024},
volume = {215},
number = {2},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/}
}
I. V. Vyugin; L. A. Dudnikova. Stable vector bundles and the Riemann–Hilbert problem on a Riemann surface. Sbornik. Mathematics, Tome 215 (2024) no. 2, pp. 141-156. http://geodesic.mathdoc.fr/item/SM_2024_215_2_a0/
[1] A. A. Bolibrukh, Fuchsian differential equations and holomorphic bundles, Moscow Center of Continuous Mathematical Education, Moscow, 2000, 127 pp. (Russian)
[2] A. A. Bolibrukh, “The Riemann–Hilbert problem on a compact Riemannian surface”, Proc. Steklov Inst. Math., 238 (2002), 47–60 | MR | Zbl
[3] H. Esnault and E. Viehweg, “Logarithmic de Rham complexes and vanishing theorems”, Invent. Math., 86:1 (1986), 161–194 | DOI | MR | Zbl
[4] G. Harder and M. S. Narasimhan, “On the cohomology groups of moduli spaces of vector bundles on curves”, Math. Ann., 212 (1975), 215–248 | DOI | MR | Zbl
[5] A. A. Bolibrukh, “The 21st Hilbert problem for linear Fuchsian systems”, Proc. Steklov Inst. Math., 206 (1995), 1–145 | MR | Zbl
[6] I. V. V'yugin and R. R. Gontsov, “Additional parameters in inverse monodromy problems”, Sb. Math., 197:12 (2006), 1753–1773 | DOI | MR | Zbl
[7] M. S. Narasimhan and C. S. Seshadri, “Stable and unitary vector bundles on a compact Riemann surface”, Ann. of Math. (2), 82:3 (1965), 540–567 | DOI | MR | Zbl
[8] I. V. V'yugin, “Fuchsian systems with completely reducible monodromy”, Math. Notes, 85:6 (2009), 780–786 | DOI | MR | Zbl
[9] I. V. V'yugin, “Irreducible Fuchsian system with reducible monodromy representation”, Math. Notes, 80:4 (2006), 478–484 | DOI | MR | Zbl