Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment
Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 119-140
Voir la notice de l'article provenant de la source Math-Net.Ru
A generalization of the well-known result concerning the survival probability of a critical branching process in random environment $Z_k$ is considered. The triangular array scheme of branching processes in random environment $Z_{k,n}$ that are close to $Z_k$ for large $n$ is studied. The equivalence of the survival probabilities for the processes $Z_{n,n}$ and $Z_n$ is obtained under rather natural assumptions on the closeness of $Z_{k,n}$ and $Z_k$.
Bibliography: 7 titles.
Keywords:
random walks, branching processes, random environments.
@article{SM_2024_215_1_a6,
author = {V. V. Kharlamov},
title = {Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment},
journal = {Sbornik. Mathematics},
pages = {119--140},
publisher = {mathdoc},
volume = {215},
number = {1},
year = {2024},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/}
}
TY - JOUR AU - V. V. Kharlamov TI - Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment JO - Sbornik. Mathematics PY - 2024 SP - 119 EP - 140 VL - 215 IS - 1 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/ LA - en ID - SM_2024_215_1_a6 ER -
V. V. Kharlamov. Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 119-140. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/