@article{SM_2024_215_1_a6,
author = {V. V. Kharlamov},
title = {Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment},
journal = {Sbornik. Mathematics},
pages = {119--140},
year = {2024},
volume = {215},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/}
}
TY - JOUR AU - V. V. Kharlamov TI - Asymptotic behaviour of the survival probability of almost critical branching processes in a random environment JO - Sbornik. Mathematics PY - 2024 SP - 119 EP - 140 VL - 215 IS - 1 UR - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/ LA - en ID - SM_2024_215_1_a6 ER -
V. V. Kharlamov. Asymptotic behaviour of the survival probability of almost critical branching processes in a random environment. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 119-140. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/
[1] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1977), 791–804 | DOI | MR | Zbl
[2] J. Geiger and G. Kersting, Theory Probab. Appl., 45:3 (2001), 517–525 | DOI | MR | Zbl
[3] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl
[4] G. Kersting and V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp. | DOI | Zbl
[5] D. Denisov, A. Sakhanenko and V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | DOI | MR | Zbl
[6] V. V. Petrov, Sums of independent random variables, Akademie-Verlag, Berlin, 1975, x+348 pp. | DOI | Zbl
[7] A. V. Skorokhod, “Limit theorems for stochastic processes”, Theory Probab. Appl., 1:3 (1956), 261–290 | DOI | MR | Zbl