Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment
Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 119-140

Voir la notice de l'article provenant de la source Math-Net.Ru

A generalization of the well-known result concerning the survival probability of a critical branching process in random environment $Z_k$ is considered. The triangular array scheme of branching processes in random environment $Z_{k,n}$ that are close to $Z_k$ for large $n$ is studied. The equivalence of the survival probabilities for the processes $Z_{n,n}$ and $Z_n$ is obtained under rather natural assumptions on the closeness of $Z_{k,n}$ and $Z_k$. Bibliography: 7 titles.
Keywords: random walks, branching processes, random environments.
@article{SM_2024_215_1_a6,
     author = {V. V. Kharlamov},
     title = {Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment},
     journal = {Sbornik. Mathematics},
     pages = {119--140},
     publisher = {mathdoc},
     volume = {215},
     number = {1},
     year = {2024},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/}
}
TY  - JOUR
AU  - V. V. Kharlamov
TI  - Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 119
EP  - 140
VL  - 215
IS  - 1
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/
LA  - en
ID  - SM_2024_215_1_a6
ER  - 
%0 Journal Article
%A V. V. Kharlamov
%T Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment
%J Sbornik. Mathematics
%D 2024
%P 119-140
%V 215
%N 1
%I mathdoc
%U http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/
%G en
%F SM_2024_215_1_a6
V. V. Kharlamov. Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 119-140. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/