Asymptotic behaviour of the survival probability of almost critical branching processes in a random environment
Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 119-140
Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

A generalization of the well-known result concerning the survival probability of a critical branching process in random environment $Z_k$ is considered. The triangular array scheme of branching processes in random environment $Z_{k,n}$ that are close to $Z_k$ for large $n$ is studied. The equivalence of the survival probabilities for the processes $Z_{n,n}$ and $Z_n$ is obtained under rather natural assumptions on the closeness of $Z_{k,n}$ and $Z_k$. Bibliography: 7 titles.
Keywords: random walks, branching processes, random environments.
@article{SM_2024_215_1_a6,
     author = {V. V. Kharlamov},
     title = {Asymptotic behaviour of the survival probability of almost critical branching processes in a~random environment},
     journal = {Sbornik. Mathematics},
     pages = {119--140},
     year = {2024},
     volume = {215},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/}
}
TY  - JOUR
AU  - V. V. Kharlamov
TI  - Asymptotic behaviour of the survival probability of almost critical branching processes in a random environment
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 119
EP  - 140
VL  - 215
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/
LA  - en
ID  - SM_2024_215_1_a6
ER  - 
%0 Journal Article
%A V. V. Kharlamov
%T Asymptotic behaviour of the survival probability of almost critical branching processes in a random environment
%J Sbornik. Mathematics
%D 2024
%P 119-140
%V 215
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/
%G en
%F SM_2024_215_1_a6
V. V. Kharlamov. Asymptotic behaviour of the survival probability of almost critical branching processes in a random environment. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 119-140. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a6/

[1] M. V. Kozlov, “On the asymptotic behavior of the probability of non-extinction for critical branching processes in a random environment”, Theory Probab. Appl., 21:4 (1977), 791–804 | DOI | MR | Zbl

[2] J. Geiger and G. Kersting, Theory Probab. Appl., 45:3 (2001), 517–525 | DOI | MR | Zbl

[3] V. I. Afanasyev, J. Geiger, G. Kersting and V. A. Vatutin, “Criticality for branching processes in random environment”, Ann. Probab., 33:2 (2005), 645–673 | DOI | MR | Zbl

[4] G. Kersting and V. Vatutin, Discrete time branching processes in random environment, Math. Stat. Ser., John Wiley Sons, London; ISTE, Hoboken, NJ, 2017, xiv+286 pp. | DOI | Zbl

[5] D. Denisov, A. Sakhanenko and V. Wachtel, “First-passage times for random walks with nonidentically distributed increments”, Ann. Probab., 46:6 (2018), 3313–3350 | DOI | MR | Zbl

[6] V. V. Petrov, Sums of independent random variables, Akademie-Verlag, Berlin, 1975, x+348 pp. | DOI | Zbl

[7] A. V. Skorokhod, “Limit theorems for stochastic processes”, Theory Probab. Appl., 1:3 (1956), 261–290 | DOI | MR | Zbl