Mots-clés : variational formulae
@article{SM_2024_215_1_a4,
author = {V. N. Dubinin},
title = {Variational formulae for conformal capacity},
journal = {Sbornik. Mathematics},
pages = {90--100},
year = {2024},
volume = {215},
number = {1},
language = {en},
url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a4/}
}
V. N. Dubinin. Variational formulae for conformal capacity. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 90-100. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a4/
[1] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix to: R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, NY, 1950, 249–323 | DOI | MR | Zbl
[2] M. A. Lavrentiev and B. V. Shabat, Methods of the theory of functions of a complex variable, 5th ed., Nauka, Moscow, 1987, 688 pp. (Russian) ; German transl. of 3rd ed., M. A. Lawrentjew and B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, VEB Deutscher Verlag Wissensch., Berlin, 1967, x+846 pp. | MR | Zbl | MR | Zbl
[3] M. A. Lavrentiev and B. V. Shabat, Problems in hydrodynamics and their mathematical models, Nauka, Moscow, 1973, 416 pp. (Russian) | MR
[4] P. L. Duren and M. M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pacific J. Math., 148:2 (1991), 251–273 | DOI | MR | Zbl
[5] P. Duren and J. Pfaltzgraff, “Robin capacity and extremal length”, J. Math. Anal. Appl., 179:1 (1993), 110–119 | DOI | MR | Zbl
[6] P. L. Duren, “Robin capacity”, Computational methods and function theory 1997 (Nicosia 1997), Ser. Approx. Decompos., 11, World Sci. Publ., River Edge, NJ, 1999, 177–190 | DOI | MR | Zbl
[7] A. Yu. Solynin, “Moduli and extremal metric problems”, St. Petersburg Math. J., 11:1 (2000), 1–65 | MR | Zbl
[8] S. Nasyrov, “Robin capacity and lift of infinitely thin airfoils”, Complex Var. Theory Appl., 47:2 (2002), 93–107 | DOI | MR | Zbl
[9] S. R. Nasyrov, “Variations of Robin capacity and applications”, Siberian Math. J., 49:5 (2008), 894–910 | DOI | MR | Zbl
[10] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Springer, Basel, 2014, xii+344 pp. | DOI | MR | Zbl
[11] S. P. Suetin, “An analogue of the Hadamard and Schiffer variational formulas”, Theoret. and Math. Phys., 170:3 (2012), 274–279 | DOI | DOI | MR | Zbl
[12] V. N. Dubinin and E. G. Prilepkina, “On variational principles of conformal mappings”, St. Petersburg Math. J., 18:3 (2007), 373–389 | DOI | MR | Zbl
[13] O. D. Kellogg, “Harmonic functions and Green's integral”, Trans. Amer. Math. Soc., 13:1 (1912), 109–132 | DOI | MR | Zbl
[14] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | Zbl
[15] P. Henrici, Applied and computational complex analysis, v. 3, Pure Appl. Math. (N. Y.), Discrete Fourier analysis — Cauchy integrals — construction of conformal maps — univalent functions, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1986, xvi+637 pp. | MR | Zbl
[16] R. W. Barnard and A. Yu. Solynin, “Local variations and minimal area problem for Carathéodory functions”, Indiana Univ. Math. J., 53:1 (2004), 135–167 | DOI | MR | Zbl
[17] V. N. Dubinin, “Quadratic forms involving Green's and Robin functions”, Sb. Math., 200:10 (2009), 1439–1452 | DOI | MR | Zbl