Variational formulae for conformal capacity
Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 90-100 Cet article a éte moissonné depuis la source Math-Net.Ru

Voir la notice de l'article

Analogues of Hadamard's classical variational formula are presented for the Dirichlet integral of a normalized harmonic function under deformations of its domain of definition. Variational formulae for quadratic forms with coefficients depending on the inner radii, Robin radii, Green's functions and Robin functions of the domains under consideration are also presented. Bibliography: 17 titles.
Keywords: conformal capacity, Dirichlet integral, Robin function, Robin capacity.
Mots-clés : variational formulae
@article{SM_2024_215_1_a4,
     author = {V. N. Dubinin},
     title = {Variational formulae for conformal capacity},
     journal = {Sbornik. Mathematics},
     pages = {90--100},
     year = {2024},
     volume = {215},
     number = {1},
     language = {en},
     url = {http://geodesic.mathdoc.fr/item/SM_2024_215_1_a4/}
}
TY  - JOUR
AU  - V. N. Dubinin
TI  - Variational formulae for conformal capacity
JO  - Sbornik. Mathematics
PY  - 2024
SP  - 90
EP  - 100
VL  - 215
IS  - 1
UR  - http://geodesic.mathdoc.fr/item/SM_2024_215_1_a4/
LA  - en
ID  - SM_2024_215_1_a4
ER  - 
%0 Journal Article
%A V. N. Dubinin
%T Variational formulae for conformal capacity
%J Sbornik. Mathematics
%D 2024
%P 90-100
%V 215
%N 1
%U http://geodesic.mathdoc.fr/item/SM_2024_215_1_a4/
%G en
%F SM_2024_215_1_a4
V. N. Dubinin. Variational formulae for conformal capacity. Sbornik. Mathematics, Tome 215 (2024) no. 1, pp. 90-100. http://geodesic.mathdoc.fr/item/SM_2024_215_1_a4/

[1] M. Schiffer, “Some recent developments in the theory of conformal mapping”, Appendix to: R. Courant, Dirichlet's principle, conformal mapping, and minimal surfaces, Interscience Publishers, Inc., New York, NY, 1950, 249–323 | DOI | MR | Zbl

[2] M. A. Lavrentiev and B. V. Shabat, Methods of the theory of functions of a complex variable, 5th ed., Nauka, Moscow, 1987, 688 pp. (Russian) ; German transl. of 3rd ed., M. A. Lawrentjew and B. W. Schabat, Methoden der komplexen Funktionentheorie, Math. Naturwiss. Tech., 13, VEB Deutscher Verlag Wissensch., Berlin, 1967, x+846 pp. | MR | Zbl | MR | Zbl

[3] M. A. Lavrentiev and B. V. Shabat, Problems in hydrodynamics and their mathematical models, Nauka, Moscow, 1973, 416 pp. (Russian) | MR

[4] P. L. Duren and M. M. Schiffer, “Robin functions and energy functionals of multiply connected domains”, Pacific J. Math., 148:2 (1991), 251–273 | DOI | MR | Zbl

[5] P. Duren and J. Pfaltzgraff, “Robin capacity and extremal length”, J. Math. Anal. Appl., 179:1 (1993), 110–119 | DOI | MR | Zbl

[6] P. L. Duren, “Robin capacity”, Computational methods and function theory 1997 (Nicosia 1997), Ser. Approx. Decompos., 11, World Sci. Publ., River Edge, NJ, 1999, 177–190 | DOI | MR | Zbl

[7] A. Yu. Solynin, “Moduli and extremal metric problems”, St. Petersburg Math. J., 11:1 (2000), 1–65 | MR | Zbl

[8] S. Nasyrov, “Robin capacity and lift of infinitely thin airfoils”, Complex Var. Theory Appl., 47:2 (2002), 93–107 | DOI | MR | Zbl

[9] S. R. Nasyrov, “Variations of Robin capacity and applications”, Siberian Math. J., 49:5 (2008), 894–910 | DOI | MR | Zbl

[10] V. N. Dubinin, Condenser capacities and symmetrization in geometric function theory, Springer, Basel, 2014, xii+344 pp. | DOI | MR | Zbl

[11] S. P. Suetin, “An analogue of the Hadamard and Schiffer variational formulas”, Theoret. and Math. Phys., 170:3 (2012), 274–279 | DOI | DOI | MR | Zbl

[12] V. N. Dubinin and E. G. Prilepkina, “On variational principles of conformal mappings”, St. Petersburg Math. J., 18:3 (2007), 373–389 | DOI | MR | Zbl

[13] O. D. Kellogg, “Harmonic functions and Green's integral”, Trans. Amer. Math. Soc., 13:1 (1912), 109–132 | DOI | MR | Zbl

[14] G. M. Goluzin, Geometric theory of functions of a complex variable, Transl. Math. Monogr., 26, Amer. Math. Soc., Providence, RI, 1969, vi+676 pp. | MR | Zbl

[15] P. Henrici, Applied and computational complex analysis, v. 3, Pure Appl. Math. (N. Y.), Discrete Fourier analysis — Cauchy integrals — construction of conformal maps — univalent functions, Wiley-Intersci. Publ., John Wiley Sons, Inc., New York, 1986, xvi+637 pp. | MR | Zbl

[16] R. W. Barnard and A. Yu. Solynin, “Local variations and minimal area problem for Carathéodory functions”, Indiana Univ. Math. J., 53:1 (2004), 135–167 | DOI | MR | Zbl

[17] V. N. Dubinin, “Quadratic forms involving Green's and Robin functions”, Sb. Math., 200:10 (2009), 1439–1452 | DOI | MR | Zbl